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Abstract

Effective Assisted Reproductive Technology (ART) relies in part upon accurate but eas-

ily conducted measurements of sperm motion parameters. Several established methods are

widely used to assess possible reasons for male infertility, in human and veterinary An-

drology clinics. Computer-assisted sperm analysis (CASA) devices quantitatively assess

sperm motion parameters, which have been defined by the World Health Organization, and

include the percentage of motile cells in a sample and the motion characteristics of individ-

ual cells, such as curvilinear velocity (VCL), average path velocity (VAP) and straight line

ii



www.manaraa.com

velocity (VSL). However, CASA analyses fail to define hyperactive sperm motility or de-

termine the prevalence of hyperactively motile sperm in the sample. Hyperactively motile

sperm swim in an erratic pattern, and this occurs only at the very end of sperm capacitation,

a series of biochemical changes occurring in a sperm which enables it to fertilize an oocyte.

The computational challenge for detecting hyperactivated sperm motility lies in precisely

modeling sperm movement changes that accurately reflect the sperm’s biomedical function,

by developing an algorithm that detects and classifies these unique motility patterns. Cur-

rently, no such algorithms reliably classify hyperactivated spermatozoa. Therefore, several

methods to automatically identify and classify hyperactivated spermatozoa trajectories are

described and their performance compared to ’the gold standard’ of visual classification,

by experts.

The methods considered were: two existing methods, a mathematical modification to

one of these, and three new methods, each examined independently and then two were

combined to produce an integrated approach.

Evaluation of each method was performed by using each to analyze an initial data set

containing tracks of hyperactivated and progressive sperm, which had been classified by

experts in the field, and then to analyze data sets obtained from actual laboratory sam-

ples. Classifications as well as misclassifications were recorded in diffusion matrices. Two

methods, the Minimum Bounding Square Ratio (MBSR) and the Rotated Rectangular Lin-

earity (RRL) were more effective in accurately detecting hyperactivated sperm and were

similar in correctly classifying hyperactivated sperm. However, RRL misclassified twice

as many sperm as MBSR. MBSR also outperformed the other methods in correctly classi-

fying progressively motile sperm and sperm exhibiting transitional motility. After develop-
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ing this algorithm, it was applied to evaluate sperm from a large experiment to determine

if sperm treated with different phosphodiesterase inhibitors, used in erectile dysfunction

drugs, exhibit sperm motility. The experiment would not have been possible without these

new computer algorithms. Taken together, this research demonstrates that newly devel-

oped algorithms can be used to identify critically important features of sperm, such as

hyperactivity. One algorithm, MBSR may become an important tool improving Assisted

Reproductive Technology’s success.
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Chapter 1

Introduction

Mammalian spermatozoa are special self-propelled reproductive cells. Contrary to the

widely held belief, ejaculated mammalian spermatozoa do not have the immediate capacity

for fertilization [8, 21, 33, 109, 118]. The spermatozoon must undergo several biochemical

changes as a prerequisite to become competent to fertilize an oocyte. These processes lead

to ”capacitation” [33] . Most visibly, the swimming pattern of the sperm (motility), changes

from a more linear to an erratic star-spin pattern, called hyperactivation [78, 117]. These

sperm movements (trajectories), can be observed under a regular microscope or digitized as

2-dimensional tracks using a computerized sperm scanner. Not only do the movement pat-

terns of the sperm change, irreversible biochemical changes require the sperm to fertilize

an ovum in the immediate future or it will die [21, 25, 33, 55, 109].

Current male fertility measurement parameters were standardized by the World Health

Organization (WHO) as early as 1987 with some amendments in 1999. However, the WHO

criteria do not provide computational algorithms for classifying hyperactivated sperms [30,
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49, 57, 89, 103, 113]. Additionally, definitions and descriptions of sperm hyperactivity

often vary from author to author, even on the same species [16, 55, 78, 111, 122].

Most hyperactivity classification approaches describe the track images of different stages.

Rather than trying to repeat a similar method of describing the virtually endless number of

possible track patterns, this thesis attempts to interpret the erratic sperm movement as a

physiological ovum search pattern. Hence, robust computational algorithms to character-

ize these trajectories were derived. Using these and additional algorithms, we are able to

automate sperm hyperactivation classification.

1.1 Problem and Scope

Capacitation with its visible effect, hyperactivation, is regarded as the terminal event

of maturation of the spermatozoon, necessary for fertilizing an oocyte [42, 56, 117]. As-

sisted Reproductive Technology (ART) health care costs were reported in 2008 by Myers

et al. to be an estimated $3 billion for the U.S [1, 62, 87]. Despite these high costs for

infertile couples seeking medical help, computer assisted semen analysis (CASA) is often

underutilized in favor of the most basic sperm analysis, which is on par with a manual

microscopic sperm analysis. Although CASA has been shown to improve fertilization out-

comes, surprisingly, many in-vitro fertilization (IVF) clinics do not use advanced sperm

analysis methods [6, 24]. An often cited reason for the low utilization of CASA is the

expense of acquiring a CASA device and skepticism about the clinically applicable value

of currently used computer algorithms. In addition, human operator expertise is judged

to be superior to a computer analysis [32]. Presently, no commercially available CASA

device has specifically developed algorithms to classify hyperactive sperm. Users must
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attempt to derive hyperactivity from existing measures. CASA devices, as they are today,

are indeterministic, crude, idiosyncratic and calculate only convenient measures which are

only tangentially relevant to hyperactivity. Sperm hyperactivation plays a critical role in

the spermatozoa’s life to fertilize an ovum. Therefore, a robust algorithm to classify hyper-

activation could improve fertilization rates and could reduce examination costs.

In addition, reliable knowledge of hyperactivated sperm may be helpful in the cattle in-

dustry, where IVF is commonly preferred over the use of less successful intracytoplasmic

sperm injection (ICSI) and could improve the breeding technique of live stock. [101]. It

also may be beneficial for in vitro fertilization of equines, which is currently not possible

without inducing sperm hyperactivation. The exact timing knowledge of capacitation and

hyperactivation is crucial for equine reproduction.

Lastly, the development of more effective means by which to classify hyperactivity will

assist scientists and practitioners to understand and develop better ART procedures and

pharmaceuticals, which could have great ramifications for breeding and maintenance of

endangered mammalian species.

1.2 Motivation

This thesis is focused on the physical phenomenon of hyperactive motility observed in

the spermatozoa. Although capacitation and subsequent hyperactivation have been found to

play an important role in fertility, little work has been done to develop adequate automatic

robust computational tools for detection and classification of hyperactivated spermatozoa.
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At the present time capacitation and hyperactivation is assessed by either flow cytometry

assays, which are based on fluorescence staining procedures, completely loosing the im-

portant motility factor of the sperm, or using simple thresholding values provided by sperm

scanners[77, 116]. Most hyperactivity research concentrated on capturing the sperm motil-

ity pattern pictorially, rather than algorithmically. After great interest in the mid 1990’s by

researchers in investigating computational and standardized sperm motility analysis meth-

ods, the interest waned in computer science approaches and even reversed in some areas

back to manual techniques. Therefore, there is need to develop new measures based on

bioinformatic algorithms to automatically capture and classify motility changes of sperm.

1.3 Research Questions

Since the discovery of the spermatozoa maturation cycle, termed ”capacitation” in 1951

by Chang [20], Austin [8] and of hyperactivation in 1969 by Yanagimachi, many projects

have been initiated to scientifically describe this phenomenon. Examples of such projects

include mostly pictorial sperm hyperactivation pattern descriptions and a few mathematical

analyses of sperm movement changes. Capacitation and subsequent hyperactivation are a

result of biochemical changes of the sperm cell head, the acrosome, as well as intracellular

changes. As such, to this day, only time consuming assays can be used to test for capac-

itated and hyperactivated sperm. In the last 10 years the interest diminished in finding a

reliable and fast way to describe sperm movement changes. This thesis aims at investigat-

ing the automated identification and classification of hyperactivated spermatozoa.
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R1: Can hyperactivated sperm be identified and classified from 2D trajectory data, ob-

tained from industry standard semen scanners?

R2: Is it possible to develop computational algorithms to describe sperm hyperactivation?

R3: Can computer algorithms be used to accurately describe movement patterns?

R4: Can such algorithms match or surpass classifications by experts in the field?

R5: Can the existing sperm parameter measures be improved?

R6: Are those new measures and algorithms robust enough to be used in daily laboratory

testing?

These research questions can be summarized as follows:

R7: Can we automatically detect types of sperm motility using existing laboratory

technology with computer science algorithms?
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Chapter 2

Existing Work

An extensive body of publications exists covering spermatozoa research. This is summa-

rized and discussed in section 2.1. Further, this chapter is structured into a discussion on

sperm morphology, sperm shape and anatomy, the internal components of the spermatoza

cell (section 2.2); followed by a discussion of sperm motility properties (section 2.3) and

sperm measurement parameters (section 2.4). Section 2.5 discusses sperm capacitation and

section 2.6 describes sperm hyperactive motility (visible changes in the movement) of the

sperm. Section 2.7 discusses established computer-aided sperm analysis CASA, followed

by sperm hyperactivity classification (7.3.6). The chapter concludes with open problems in

section 2.9. The term spermatoza means multiple sperm cells, while spermatozoon refers

to a single sperm cell. Sperm is used as singular or plural. We apply these terms inter-

changeably throughout this dissertation.
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2.1 Literature Search

A literature search was performed using the keywords: sperm, sperm morphology, motil-

ity, fertility, hyperactivation, capacitation, algorithms, sperm parameters, trajectories, CASA,

human- animal study, reliability / standardization and identification/classification. We fol-

lowed the paper reviewing technique as published by Engström et al.[36] in the broadest

sense. The interdisciplinary topic of this thesis required deviation from their recommended

search order, such as fulltext search first, since keywords have different meanings in differ-

ent disciplines.

To ensure a broad search, no date restrictions were included. The subject of this dis-

sertation is interdisciplinary, including computer science, human and veterinary medicine,

engineering and biomedical sciences. 289 references were deduced from the databases

below. Since papers directly dealing with the research area of this dissertation were not

common, 79 final references were manually selected and categorized into a matrix con-

taining five subject and seven approach sections (see table 2.3). Additional papers outside

this matrix were included in this work to reference, for example, costs for IVF procedures.

Most papers were retrieved from the electronic databases below. However, for complete-

ness, a few references were also obtained from manuals and publicly available research

reports. For example, reports from the U.S. Department of Health and Human Services

were also examined for relevant data and information.

• PubMed US National Library of Medicine

(< www.ncbi.nlm.nih.gov/pubmed >)

• IEEE eXplore
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(< ieeexplore.ieee.org >)

• SpringerLink

(< www.springerlink.com >)

• ACM Digital Library

(< portal.acm.org >)

Existing literature matrix on ’Subject’:

Sperm Morphology: Is intended to provide biomedical background information about the

shape of the cell. Often, detailed motility descriptions can be found in these papers.

Motility: Is a broad term, covering computer science and biomedical journals. It is intended

to capture publications dealing with sperm motility in the widest sense.

Fertility: Is intended to uncover papers in the field of fertility, which uses sperm motility

applications.

Hyperactivity/Capacitation: Is intended to retrieve biomedical background as well as spe-

cific publications, regarding uses of computer science within this subject.

Algorithms: Is intended to extract papers, dealing with algorithms and spermatoza.

Existing literature matrix on ’Approach’:

Sperm parameters: Is limiting the search on parameters used in sperm research.

Trajectories: Is reducing the publication to the field of sperm track generation, usage and

storage.

CASA: Discovers papers or sections of papers dealing with computer-aided sperm analysis.

Human study: Is intended to show how and what investigators published in human re-
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search.

Animal study: Similar as above, however emphasis on animal studies.

Reliability/ standardization: Is intended to show sperm research, concerned about reliabil-

ity/ standardization.

Identification/classification: Is intended to discover publications on identifying or classify-

ing sperm in the widest sense.

The subjects of the literature search were intentionally kept broad, since specific com-

puter science keywords of the paper title, abstract and fulltext did not yield enough ’hits”

for this interdisciplinary topic. The approach categories allowed us to be more specific on

the topic while still be general enough to not exclude potential papers of interest. The ma-

trix of Table 2.3 shows the depth of coverage of each research area. It served well to provide

an initial impression of the existing relevant published work. However, it can be improved,

for example by dividing the matrix into ’basic background’ and ’research relevant’ papers.

An analysis by subject and approach revealed that 132 papers fit into the broad subject

of motility, while only 27 papers published algorithms. Papers in the matrix are cited by

subject and approach, therefore a citation can occur multiple times. There is a great interest

in the areas of sperm capacitation and hyperactivation, seen by the 103 papers in Table 2.1.

Judging by the number of papers in Table 2.2 a strong scientific interest exists for all seven

approach categories.
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Subject Number of Papers

sperm morphology 52

motility 135

fertility 67

hyperactivation/capacitation 103

algorithms 27

Table 2.1: Literature Search by Subject. There are many papers covering capacitation and hyper-
activation, however little work has been done with algorithms. Note: papers may appear
in multiple sections of the matrix. Number of papers are summed up by column, which
include seven approach object categories

Approach Number of Papers

sperm parameters 67

trajectories 49

CASA 68

human study 55

animal study 36

reliability / standardization 60

identification/classification 49

Table 2.2: Literature Search by Approach. Number of papers are summed up by row, including the
five subject categories.
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Table 2.3: Matrix on Existing Literature of Spermatozoa Research

11



www.manaraa.com

2.2. MORPHOLOGY AND ANATOMY

2.2 Morphology and Anatomy

The mammalian spermatozoon belongs to the group of gamete cells that fuse with an-

other gamete, the oocyte, during fertilization. The spermatozoon contains four segments:

the head, middle piece, flagellum and end piece. In 1985, Cummins published linear

sperm dimensions of 284 species, based on current literature. The length of mammalian

sperm ranges from 33.5μm − 356.3μm. A human sperm (homo sapiens) ranges from

54.5 to 61.5μm in length. The species used in this study, the horse, produces sperma-

tozoa that are approximately 60.6μm in length including a head that is 7.0μm long and

3.9μm in diameter [29, 42]. The head is flat and contains an acrosomal cap. This cap

contains enzymes that when released, allow the sperm to penetrate the outer integuments

of the oocyte. The middle piece consists of an axial bundle of microtubules surrounded by

mitochondrial cells, that act as the cell’s power plant and produce the ATP necessary for

cell movement. ATP, Adenosine-5-triphosphate is a multifunctional nucleotide (organic

compound), responsible for intracellular energy transfer. The principle part is the motile

component of the spermatozoon and contains microtubuli, which slide past each other in

the presence of ATP (Figure 2.1). This sliding motion causes the principal piece to bend

back and forth causing the tail to beat and propelling the sperm forward. The head of the

spermatozoon is approximately 20 times smaller than the oocyte.
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Figure 2.1: Human Spermatozoa Diagram. Wikimedia Commons. Proofed for correctness by Gra-
ham [40, 104]

2.3 Motility

The largest component of the sperm is the principal, which includes the flagellum. The

cross section of the tail is oval with an approximate diameter of 0.5μm containing an in-

ner and outer axial oriented set of fibers, responsible for a helical motion of the tail which

propels the sperm. As soon as sperm are ejaculated the full motility pattern is displayed. A

human gamete can travel at a progressive speed of 25−50μm/s [42]. Contrary to common

belief, uterine and ovarian muscular contractions are mainly responsible for the transport

of the spermatozoa through the female reproductive tract, rather than the propulsion of

the sperm itself. In 1972 Baker performed an experiment in which both live and dead boar

sperm were inseminated within the reproductive tract of a gilt and found that both, dead and

live, sperm were transported up the reproductive tract [10], although dead sperm transport

was less efficient than the live sperm. Another experiment by Kissler (2004) supported the
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results of this passive transport mechanism by showing that isotope marked macroalbumin-

aggregates [61] are transported through the female reproductive tract. However, sperma-

tozoa motility traversing certain sections of the female tract including the utero-tubular

junction and areas within the fallopian tubes, allow the sperm to come in contact with the

oocyte. Sperm motility immediately post ejaculation is a linear, progressive motion. This

pattern changes to an erratic star pattern at the end of sperm capacitation, when the sperm

approaches the oocyte. This changing behavior pattern is further discussed in section 2.5

and 2.6.

2.4 Measures

The focus of this dissertation is sperm motility, thus mainly motility parameters are dis-

cussed here. We first describe in section 2.4.1 standardized measures as published by the

World Health Organization (WHO), followed by non-motility measures relevant to this dis-

sertation in section 2.4.2. For completeness, we include non-traditional motility measures

in section 2.4.3. However, no standard parameter values or algorithms exist to classify hy-

peractivated sperm. Section 2.4.4 concludes with a discussion about these measures and

their relevance to hyperactivity. The measures are summarized in Table 2.4.

2.4.1 Traditional and WHO Standardized Measures

The World Health Organization (WHO) published the laboratory manual for examina-

tion of human semen in 1987 and 1999[89]. It was followed in 2002 by the European

Society of Human Reproduction and Embryology (ESHRE) and the Special Interest Group

on Andrology (SIGA) [88]. These guidelines were an attempt to standardize spermatozoa
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parameters for easier comparison between studies conducted at different sites. Figure 2.2

shows an example trajectory containing the definitions of the parameters. Both manuals

provide guidelines for human studies. However, these guidelines have been used in animal

studies as well. The guidelines cover many semen parameters including ejaculate volume

and sperm concentration. The WHO motility parameters are defined as follows:

Curvilinear velocity VCL: This is the point-to-point velocity of the sperm head’s center

position in μm/s divided by the recording time.

V CL =

∑m−1
i=0

√
(xi+1 − xi)

2 + (yi+1 − yi)
2

(m− 1) Δt
(2.1)

Here xi, yi are the data points of the trajectory and i and m are the indices of the first and

last point, respectively. The sampling time is Δt.

Straight line velocity VSL: This is the length of the line between the first and last point

of the trajectory, divided by the acquisition time in μm/s. VSL is an indicator for forward

moving, progressive sperm. The shortcoming of this measure is that this formula only uses

the first and the last point of the trajectory to calculate progressiveness, while ignoring the

entire middle portion of the track:
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VCL
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Figure 2.2: WHO sperm motility parameters. The Curvilinear Path VCL represents the measured
sperm track. The Average Path Velocity is calculated from a 5-point smoothed trajec-
tory. The Straight Path Velocity is used in conjunction with VCL to represent ”Straight-
ness” of the spermatoza movement. All measures are distances μm, sampled at a fixed
rate of 60 Hz and then represented as velocity μm/s.

V SL =

√
(xm − x0)

2 + (ym − y0)
2

(m− 1) Δt
(2.2)

Where x0 and y0 are the x, y coordinates of the first point of the trajectory and xm and ym

are the coordinates of the last point of the trajectory.

The average path velocity VAP: This is a 5-point running average to produce a smoothed

path of the trajectory.

V AP =

∑m−1
i=0

√
(x̄i+1 − x̄i)

2 + (ȳi+1 − ȳi)
2

(n− 1) Δt
(2.3)

Where xi, yi are the data points of the trajectory and i and m are the indices of the first
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and last point, respectively. For the x̄ component:

x̄k =
1

5

k+2∑
k−2

xi (2.4)

and for the ȳ-component:

ȳk =
1

5

k+2∑
k−2

yi (2.5)

Where xk, yk denote the new average trajectory points ( k = 3 ... m− 2). At the end of

the trajectory the five-point average is reduced to a three-point average and finally to a one-

point average to compensate for the missing last four points due to the five-point running

average.

Linearity of a sperm LIN1: This is defined as the quotient of the straight linear velocity

and the the curvilinear velocity of the selected track in percent :

LIN =
V SL

V CL
(2.6)

1We adhere to WHO nomenclature, although the formula should correctly be written as LIN = V SL ∗
100/V CL.
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Straightness STR2: Similar to the definition of LIN with the exception that it uses the

average path instead of VCL:

STR =
V SL

V AP
(2.7)

Beat cross frequency BCF: This is measured in Hertz for the selected track and is defined

as the frequency with which the cell crosses the cell average path in either direction.

Amplitude of lateral head displacement ALH: Defined as twice of either the maximum or

the average value of the distance of any point on the trajectory average path to the actual

location of the sperm. In the literature [89], ALH is computed with different algorithms, so

that values are not strictly comparable. ALH is dependent on the computation of an average

path of the trajectory that can be difficult for extremely irregular tracks, such as are seen in

hyperactivated trajectories and is therefore only defined for trajectories with STR > 80%.

ALH = 2 · MAXm−1
i=0

{[
(x̄i − xi)

2 + (ȳi − yi)
2] 1

2

}
(2.8)

Where xi, yi denote the x-coordinates of the trajectory point and x̄i, ȳi are the average

position y-coordinates calculated according to formula 2.4 and 2.5

Wobble WOB: Measure of oscillation of the actual path about the average path:

2As with LIN, the formula should be correctly written as STR = V SL ∗ 100/V AP .
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WOB =
V AP

V CL
(2.9)

Mean angular displacement MAD: The time average of absolute values of the instanta-

neous turning angle of the sperm head along its curvilinear trajectory.

2.4.2 Non-Motility WHO Measures

The following measures relate only indirectly to motility classification. However, we

include these for completeness, since they are typically part of a CASA data output.

ELONGATION: The longest axis of the ellipsoid shaped spermatozoa head. Used to differ-

entiate between sperm cell and debris.

TOTAL COUNT: The total number of identified sperm cells by CASA, this includes live

and dead cells.

MOTILE COUNT: The number of identified live cells by CASA.

MOTILE PERCENT3: The fraction of (MOTILE COUNT )/(TOTAL COUNT ).

2.4.3 Non-Traditional Motility Measures

The following motility measures are not standardized or endorsed by WHO. However,

they are attempts by researchers to overcome the limitations of standardized measures to

describe sperm hyperactivity [31]. Some are used frequently, others are more esoteric. The

3As previously stated with LIN and STR, we adhere to WHO nomenclature, although the formula should

be correctly written as (MOTILE COUNT ∗ 100)/(TOTAL COUNT ).
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first two are based on the assumption that spermatozoa swimming patterns oscillate while

moving forward and the oscillation increases in frequency during hyperactivation. An os-

cillation, or a derivative, is measured as a positive and negative lateral movement of the

sperm head centroid in relation to the calculated average trajectory path [80, 84]. This

certainly is valid for most progressive sperm and some hyperactivated spermatozoa with

more regular paths (circle, linear with increased lateral movements). However, it becomes

increasingly difficult to calculate for sperm trajectories that exhibit a zig-zag or trashing

movement pattern because there is no clear distinction between the original sperm head

position and its relation to the average path trajectory. [22].

The focus of the following measures is on motility or sperm hyperactivity:

Frequency of the fundamental harmonic HAR: The fundamental frequency of the oscilla-

tion of the curvilinear trajectory around its average path. HAR is computed using a Fourier

transformation [32]. This measure is one of many similar to BCF (2.4.1), with the differ-

ence that a frequency spectrum is computed from the trajectory, based on the observation

of increased lateral movements of a hyperactivated sperm [110].

Magnitude of the fundamental harmonic MAG: The amplitude squared height of the HAR

spectral peak (MAG is a measure of the peak-to-peak dispersion of the curvilinear trajec-

tory about its average path at the fundamental frequency. This is a derivative of HAR and

dependent on an average path as defined in 2.4.1..

Head Angle Deviation Sum: This is an unusual measure proposed by Mazzilli et al. [73]

and requires specialized equipment to visualize the spermatozoa head. The measure draws
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a line along the long axis of the ellipsoid sperm head. Two consecutive lines are used to

compute the ’Head Angle’. Adding all ’Head Angles’ is the Head Angle Deviation Sum

(Figure 2.3).

Flagellar Beat Angle FBA: Another unusual measure proposed by Schmidt et al. [105] to

quantify the beating angle of the flagellum. FBA is defined by the authors as the largest

angle during the left-right movement of the sperm tail. This measure requires specialized

equipment the visualize the tail of the sperm.

ß
1

ß
3

ß
5

ß
4

ß
2

sperm head

long axis of theellipsoid sperm head

Figure 2.3: Head Angle Deviation Sum. Chart adapted from Mazzilli et al. [73]
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2.4.4 Existing Measures and Relevance to Hyperactivity Classification

The aforementioned sperm measures describe physiological behaviors of the sperm.

There are no direct or indirect measures for hyperactivity. In the past, researchers tried

to link certain measures to sperm hyperactivity or non-hyperactivity, but with divergence

on the measures in question. For example, Cancel et al. [17] investigated ALH, LIN, VCL,

VSL, BCF and LIN and concluded that VCL and LIN are the best measures for hyperac-

tivity. While Mortimer et al. [79] suggests including ALH, BCF, WOB and VSL in the

hyperactivity evaluation. So does Baumber et al. [13] in a recent publication of 2006,

recommending use of LIN, ALH and VCL for hyperactivity classification. Measures that

require equipment (Table 2.6) beyond the one typically found in fertility laboratories re-

strict the use of a potentially new hyperactivity algorithm to a smaller circle of researchers

and are considered unsuitable. We conclude that existing measures by themselves are not

suitable to reliably classify sperm hyperactivity.

Acronym Meaning Description

VCL Curvilinear Velocity total speed of the trajectory

VSL Straight Linear Velocity linear speed from 1st to last point of the trajectory

VAP Average Path Velocity speed of 5-point running average

LIN Linearity straightness of trajectory using VCL and VSL

STR Linearity straightness of trajectory using VAP and VSL

BCF Beat Cross Frequency oscillation of sperm head around average path per second

WOB Wobble oscillation measure VAP/VCL

ALH Lateral Head Displacement maximum amplitude deviation off the average path

Table 2.4: WHO Motility Measures.
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Description Meaning

Total Count total number of sperm cells including dead ones

Motile Count total number of alive sperm cells

Motile Percent number of alive sperm cells / total number of cells

Table 2.5: WHO Non-Motility Measures.

Acronym Meaning Description

HAR Frequency of Fundamental Harmonic oscillation around average path using Fourier Transformation

MAG Magnitude of HAR amplitude squared height of the HAR spectral peak

FBA Flagellar Beat Angle maximal left-right movement of the flagellum in 2D

- Head Angle Deviation ellipsoid long axis line angle between two consecutive sperm

Table 2.6: Non-standard Sperm Motility Measures.

2.5 Capacitation

Austin and Chang are credited for first describing in 1951 that ejaculate cannot imme-

diately fertilize an oocyte, but must go through changes they called capacitation [8, 20].

After ejaculation, the mammalian spermatozoon must undergo the penultimate maturation

step in its life cycle, known as capacitation (figure 2.4) before it can fertilize an oocyte.

Lately, there is a controversy about the terminal effect of capacitation. Some investiga-

tors see capacitation as reversible, others do not [33]. However, there is agreement, that

the acrosome reaction (sperm head lining, Figure 2.1) is exocytotic and cannot be stopped

or reversed once induced [117]. Exocytotis is a process in which an intracellular sphere

moves to the plasma membrane and subsequently fuses with it. Capacitation is a poorly

understood series of events that result in a visible change in the motility pattern, from pro-

gressive to whiplash-like, thrashing movements and the ability of the sperm to undergo an
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acrosome reaction. The main purpose of capacitation is enabling the sperm to penetrate

the zona pellucida to bind to the egg’s plasma membrane and to fertilize the egg. Although

the mechanism of capacitation is not clear yet, during capacitation there is an influx of

Ca2+, predominantly coming from the female reproductive tract, that increases intracel-

lular cAMP (cyclic Adenosine MonoPhosphate) a cell messenger, as well as an increase

in the phosphorylation (the addition of a phosphate PO4) of tyrosine, an amino acid, a

component of proteins [96]. This in turn increases the sperm’s motility [11, 21, 109, 117].

Progressive 
Motility

Capacitation
biochemical Changes

Hyperactive 
Motility

Fertilization

Apoptosis

oocyte
available

yes

No

Figure 2.4: Life Cycle of a Spermatozoa. Apoptosis is a irreversible programmed cell death due to
biochemical events.

2.6 Hyperactivity

Hyperactive motility of sperm, which was first reported by Yanagimachi in 1969 [117], is

a capacitation-associated phenomenon. During hyperactivation a mammalian sperm devel-

ops a distinctive motility pattern, characterized by asymmetrical, vigorous, non-directional

movements (Baumber, 2006[13]). Hyperactive motility may be critical for successful fer-
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tilization, because it improves the ability of the sperm to penetrate through the zona pellu-

cida of the oocyte. Hyperactivity appears as an essential event of capacitation associated

with an increased velocity, a decreased linearity, an increased amplitude of lateral head

displacement, ALH (2.4.1) and whiplash movements of the tail. The precise definition of

hyperactivity is difficult and there is no consensus among researchers, especially since the

movement pattern varies among species and the physical environment in which the sperm

swims (Suarez 2003, Lamirande 1997 [33, 110]). Most investigators agree on subjective,

although highly ambiguous, descriptions of hyperactivity (table 2.7) using language such as

whiplash-like, jerky movement or changes in flagellar beat pattern (See figure 2.5). Objec-

tive definitions of hyperactivity vary as well, although most authors agree on an increased

velocity (VCL, measure of section 2.1). However, ranges and thresholds differ between

authors and investigated species (Table 2.8).

A B C D E F

Figure 2.5: Examples of Stallion Spermatoza Trajectories. Progressive: Trajectories A, B, C. Hy-
peractivated: Trajectories D, E, F.
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Subjective Hyperactivity Definitions in the Literature

Author Year Hyperactivity Description Species

[53, Katz et al] 1980 whiplash-like flagellar bending, waves

of greater curvature, amplitude, and

smaller wavelength

Hamster

[14, Boatman et al.] 1991 modification in flagellar pattern of the

beat and sperm trajectory,

Human

[16, Burkman et al] 1991 trashing, circling high-curvature, heli-

cal, star-spin

Human

[122, Zhu et al] 1994 non-progressive, high curvature flag-

ellar movements, large amplitude of

lateral head displacement, transition

phase, ‘circling’, ’thrashing’, ’helical’,

’star-spin’, ’whiplash’.

Human

[119, Young et al] 1994 highly vigorous, non-progressive ran-

dom motion, large lateral displacement

of sperm head, wide-amplitude flagella

movement, wobble parameter

Rabbit

[111, Sukcharoen et al] 1995 vigorous pattern, wide-amplitude,

high-velocity, whiplash movements

of flagellum, may be progressive,

‘star-spin’.

Human

[75, Mortimer et al.] 1997 changes in the flagellar beat pattern,

high amplitude whiplash, dancing, de-

creased flagellar beat frequency and

increased flagellar curvature.

Several

[33, Lamirande et al] 1997 non-progressive, vigorous, whiplash

type, frantic, high amplitude.

Several

[78, Mortimer et at.] 1999 ‘whiplash’ style of flagellar move-

ment, ‘classic’ star-spin pattern, ‘tran-

sition’ pattern of motility.

Ram

[73, Mazzilli et at.] 2001 vigorous pattern, high velocity, wide

amplitude, whiplash movement, jerky

movement, frequent changes in direc-

tion.

Human

[100, Rathi et al] 2001 biphasic motility pattern, vigorous,

non-progressive movements, but then

became static for a while before mov-

ing again.

Stallion

[110, Suarez et al] 2003 increase in flagellar bend amplitude,

usually beat asymmetry, vigorously in

circles

Several

[60, Kinukawa et al] 2003 vigorously, whiplash, figure-8, small

circle, not swim in straight line, zig-

zag.

Hamster

[105, Schmidt et al] 2004 vigorous, non-linear movement,

whiplash.

Boar

[13, Baumber et al] 2006 asymmetrical, high-amplitude flagel-

lar beats, causing vigorous, sometimes

nondirectional movement.

Rhesus Macaque

Table 2.7: Subjective Definitions of Hyperactivity in the Literature

26



www.manaraa.com

2.6. HYPERACTIVITY

Objective Hyperactivity Definitions in the Literature

Author Year Hyperactive Transitional Species

[22, Chantler et al] 2004 V CL ≥ 180μm/s; LIN ≤ 45%; ALH ≥ 6μm - Human

[73, Mazzilli et al.] 2001 angle sum ≥ 760◦ 350◦ ≤ angle sum < 760◦ @ 21fr./sec Human

[122, Zhu et al] 1994 V CL = 90μm/s - Human

[111, Sukcharoen et al] 1995 V CL = 90μm/s - Human

[102, Robertson et al] 1988 V CL > 80μm/s VCL¿ 80 μm/s ∧ 19 < LIN ≤ 34% Human

[79, Mortimer et al] 1990 V CL ≥ 100μm/s ∧ LIN ≤ 60% VCL ≥ 30μm/s ∧ STR ≥ 60% Human

[16, Burkman] 1991 ALH ≥ 7.5μm, LIN ≤ 65 , V CL ≥ 100μm/s - Human

[100, Rathi et al] 2001 V CL ≥ 180μm/s ∧ ALH ≥ 12μm - Stallion

[13, Baumber] 2006 (1)V CL ≥ 150 μm/s; LIN ≤ 50%; ALH ≥ 7.0μm (1)V CL ≥ 130 μm/s; LIN ≤ 69%; ALH ≥ 7.5μm; STR ≤ 97 Rhesus macaque

(2)V CL = 303± 50; ALH = 13.1± 2; LIN = 34± 15% (2)V CL = 295± 40; ALH = 10.3± 2; LIN = 56± 10%

[119, Young et al] 1994 V CL ≥ 137.6± 52.0 μm/s V CL ≥ 83.1± 35.7 μm/s Rabbit

[105, Schmidt] 2004 V CL ≥ 97μm/s; LIN > 32%; ALH > 3.5μm/s 49◦ ≤ FBA < 200◦ Boar

[17, Cancel et al] 2000 V CL = 652.9μm/s; LIN = 9%; ALH = 34.9μm V CL = 496.0μm/s; LIN = 18%; ALH = 23.5μm Rat

Table 2.8: Objective Hyperactivity Definitions in the Literature. FBA: Flagellar Beat Angle.
ALH:amplitude of lateral head displacement. LIN: Linearity = V SL/V CL; STR =
V SL/V AP . The angle in angle sum is defined between two consecutive longitudinal
axis of a sperm’s head, contrary to three consecutive points from a sperm trajectory.(1):
91% effective. (2): average of 50 measurements.

27



www.manaraa.com

2.7. COMPUTER-AIDED SPERM ANALYSIS (CASA)

2.7 Computer-Aided Sperm Analysis (CASA)

The term CASA usually refers to commercial and non-commercial sperm scanners with

analysis capabilities conforming to WHO guidelines [89]. In general, the common compo-

nents of CASA devices are a microscope attached to a camera, which in turn is connected

to a video frame grabber and a CPU. The image of the microscope field is recorded by the

camera and digitized by the frame grabber. These images are stored in the computer as

dots, called pixels. A minimum number of pixels, with certain brightness and arrangement,

such as a circle or ellipsoid are recognized as sperm heads, their position tracked over time

and translated into 2-dimensional (x, y) data points. They are used to reconstruct the sperm

trajectory in an cartesian coordinate system. The numerical values are analyzed, mostly by

proprietary software. The typical sperm analysis report is a numerical printout of statisti-

cal semen parameters, such as the mean linearity of the sperm movement, percentage of

pathological versus normal shapes of the sperm head, or dead versus live sperm in the sam-

ple. Widely used commercial CASA systems include the HTM-IVOS by Hamilton-Thorne

Bioscience, Beverly, MA, and the Hobson Sperm Tracker by Hobson Sperm Tracking Ltd,

Sheffield, United Kingdom. In addition, there are also noncommercial CASA systems used

in laboratories. These often use tracking software designed for bacteria to track spermatoza

[75].

This section covers how and to what extent computer-aided sperm analyses are being

used by investigators for research and clinical diagnostics. The focus of this research is

sperm motility and its hyperactivated mode. Hence, CASA’s tools capabilities that are be-

yond those related to sperm motility are outside of the scope of this dissertation. More

technical details of the CASA device used in this thesis are explained in detail in chapter 4.
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With the advancement of computer hard- and software, first attempts appear in the literature

to automate semen analysis with computer technology as early as 1973, Jecht and Russo

[2, 5]. These authors reported that a motion-analysis system developed for the National

Aeronautics and Space Administration at the Jet Propulsion Laboratory could track human

sperm. At the time (1978), the tremendous hardware cost limited the installation to a single

device at Woods Hole, MA. It was used to screen bull studs. With the advent of the per-

sonal computer and a drop in hardware prices, the first widespread use of computer-aided

sperm analysis (CASA) devices was seen beginning in 1986. The use of CASA devices was

supposed to bring a higher precision and a better provision of quantitive data than manual

methods [30]. Interest waned after the initial hype about the capabilities of CASA devices.

As in many other areas where computers were introduced, expectations were set too high.

For example, there was the claim that CASA could replace laboratory andrologists [77].

Although much improved today, CASA initially had difficulties in distinguishing sperma-

tozoa from debris, and therefore returned false sperm concentrations. A non-representative

survey among andrologists and cryo sperm banks confirmed the less than favorable view

of CASA [54]. There is a perception among professionals that a trained technician is su-

perior to most computer-aided analysis. In addition, another often cited complaint about

proposed new sperm measurements methods is the lack of proof of applicability in daily

practice [5, 63].

2.7.1 CASA and Hyperactivation

The standard analysis reporting capabilities of CASA are frequently used by investiga-

tors to classify hyperactive sperm [17, 91, 105, 111]. For example, Mortimer et al.[77] in
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2000, suggested using a warmed glass slide with a chamber depth of 30μm and a minimal

frame acquisition setting of 50− 60 images/second. The authors suggest tracking at least

200 motile spermatozoa for CASA analysis. It is not clear from the publication whether the

author means 200 sperm tracked during one single scanning or from multiple spots from the

same specimen slide. The author suggests using the following thresholds of WHO parame-

ters to classify hyperactive sperm, V CL ≥ 150μm/s ∧ LIN ≤ 50% ∧ ALHmax±7.0μm.

Then, hyperactive sperm are identified by using the ’SORT’ function of the CASA device

for measured WHO parameters. It should be noted that Mortimer stresses the boolean logic

AND of these three sperm hyperactivity thresholds, an important detail often lacking in the

work of other investigators. It is unlikely that simple thresholding of WHO measures can

capture the complexity of hyperactive sperm movements correctly in multiple stages, (as

even stated by the authors themselves) as the transition phase, or progressive hyperacti-

vated motility, and the star-spin, or non-progressive hyperactivated motility. The author

concludes that CASA provides a more effective and streamlined clinical management of

sperm motility because, according to Mortimer, several hundred spermatozoa have to be

studied for statistical significance, which is only practical with CASA.

Sperm hyperactivity in the boar was investigated by Schmidt et al.[105] in 2004. Their

interest was to capture the fast beating flagellar motion up to 200 beats/s of single chosen

sperm. This motion is usually not visible in commercial CASA devices. The researchers

used a non-standard CASA experimental setup consisting of a custom frame grabber, a cell

motion analyzer program and a spreadsheet for data analysis. The authors introduce a new

motility parameter, the flagellar beat angle, FBA, which is, unfortunately, manually calcu-

lated and used in combination with WHO defined parameters. Their sperm hyperactivation
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thresholds are listed as ALHmean > 3.5μm as a single threshold or in combination with

V CL > 97μm/s, LIN < 32% AND WOB < 71%. It is not clear, whether the authors

apply a boolean AND among these thresholds.

Simple thresholds based on WHO measures are inadequate to reliably classify hyperac-

tivity. Sperm hyperactivity is a change of the sperm movement pattern from progressive to

an erratic pattern that cannot be captured by static thresholds alone. FBA captures the phys-

ical source of hyperactive flagellar beat increase, but requires specialized equipment and an

increase in flagellar beat does not necessarily result in an erratic movement of the sperm.

Hence, there is need for classification methods that more fully consider the physiology

of the sperm trajectory. Figure 2.6 illustrates examples of different sperm hyperactivation

approaches.

2.8 Sperm Hyperactivity Classification

Hyperactive sperm can be classified using the following types of approaches:

a: Manual

b: Computer assisted

c: Fully automated

Thus far, hyperactive sperm are often classified manually by trying to fit a sperm trajec-

tory image into a set of images with known hyperactivity classification, clearly reaching the

limitations of a human. The following section is divided into describing examples of sperm

hyperactivation classification in a manual approach (2.8.1), by using the CASA results to-
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Figure 2.6: Model-based Hyperactivity Classification

gether with spreadsheet classification (2.8.2) and by using CASA with a model approach

(2.8.3).

2.8.1 Manual Analysis

Mortimer et al. [79] in 1990 reported success in manually classifying capacitated hu-

man spermatozoa with the help of CASA into three visual categories: forward progressive,

transitional and hyperactivated motility. Human hyperactive tracks were defined by these

investigators as having the following thresholds: V CL ≥ 100μm/s, LIN < 60% and

ALH ≥ 5μm, STR < 60%, V SL < 30μm/s. Their approach was very pragmatic.

Video recordings were magnified, replayed on a monitor, retraced on acetate sheets, and

then classified by larger or less regular flagellar movement. WHO parameters were calcu-

lated manually (measured in millimeters) using a map measurer (opisometer) or curvimeter.

Considering the limited technology, the results were nevertheless impressive.
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2.8.2 Manual Analysis (CASA assisted)

Baumber [13] in 2006 reported a method of defining hyperactivity that could be rou-

tinely used in a laboratory. The method was applied to sperm of rhesus macaques. The

authors artificially triggered hyperactivity in their sperm sample by pharmaceutical agents

and examined it with CASA. The WHO motility parameters collected by the CASA device

were then used as threshold for sperm hyperactivity classification. These thresholds were:

V CL ≥ 130μm/s, LIN ≤ 69%, ALH ≥ 7.5μm. The authors reported a > 91% effec-

tiveness in detecting hyperactive sperm trajectories. Transitional tracks were based on the

10th/90th percentile of the hyperactive thresholds. The investigators’ results are surprising,

because their thresholds for sperm hyperactivation include the amplitude of lateral head

displacement, a measure based on the trajectory average path, which fails in classifying

’thrashing’ in hyperactivated tracks.

2.8.3 CASA with Model Approach

In 1999 Mortimer et al [83] introduced another paper measuring capacitated and hyper-

activated sperm tracks using three new parameters in addition to standard WHO measures.

They stipulate that hyperactivated spermatozoa are consistently mis-classified within a lab-

oratory because CASA measures, in particular the amplitude of lateral head displacement

(ALH), rely on an average path calculation, which is ambiguous for irregular, hyperacti-

vated trajectories. ALH assumes a sperm movement that increasingly oscillates around a

calculated 5 point average path. This oscillation cannot be seen in a zig-zag hyperactive

trajectory. The first new measure was the instantaneous velocity (VIN) as the velocity of

the centroid between consecutive track points. The following formula notations from Mor-
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timer’s paper were adapted to conform with the labels and indices used in this dissertation.

Distancei =
√

(xi − xi+ 1 )2 + (yi − yi+ 1 )2
. Where Distancei is a segment

between two consecutive point of the sperm trajectory and xi, yi are the data points of the

trajectory (i = 1, ..., n− 1).

Then V INi = (distancei ÷ mcf) ∗ 60 Hz , where mcf is a magnification factor

to calibrate the measure. In the authors’ case mcf was 3.54. The Velocity−angle measure

VAM (Figure 2.7), defined by the investigators as the product of the change in direction of

the centroid movement and the instantaneous velocity of the following segment is calcu-

lated from (x, y) data pairs using a spreadsheet. The angle definition is given as

cos Θk = [distance(pk−1 , pk+1)]2 + [distance(pk−1 , pk)]2 − [distance(pk , pk+1)]2

2 [distance(pk−1 , pk+1) · distance(pk−1 , pk)]
.

VAM is then V AMk = Θk · distance (pk , pk+1). The VAM product is taken for the

entire trajectory, averaged and corrected for mcf .

The third new measure introduced by Mortimer is the three-point area (TPA) which gives

the area bounded by three consecutive track points as

TPAarea = 1
2

[distance (pk−1 , pk) · distance (pk , pk+1) sin Θk].
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trajectory

φk

Figure 2.7: CASA with Model Approach. Velocity-angle measure (VAM) and Three-point area
(TPA) measure as proposed by Mortimer et al. in 1999.
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The investigators propose these thresholds for hyperactivated trajectories in the human:

V AM ≥ 230 rad μm/s AND V IMmax ≥ 250μm/s AND LIN ≤ 50% AND

fractal dimension > 1.19 AND TPAmean ≥ 1.05μm2. The investigators do not cover

the fractal dimension, but cite their paper of 1996 [84] covering this measure. There,

the authors define fractal dimension as D = log(n)

[log(n) + log( d
L)]

, where n is the number

of intervals in the trajectory, d is the planar extent of the curve and L is the length of the

trajectory. The planar extent d is defined as the maximum distance between origin and

any plotted point point in μm.

The authors found a fractal dimension ≥ 1.30 to be a hyperactivated sperm trajec-

tory. The authors concluded that TPA could not discriminate between hyperactivation and

circling. Similarly, VAM had high values for circling and for hyperactivated trajectories

and could not be used for sperm hyperactivation classification.

2.9 Open Problems

Little work has been done to identify and classify spermatozoa using bioinformatic al-

gorithms that use more detailed trajectory analysis.

Some of the open research issues pertaining to computational approaches in spermato-

zoa hyperactivity include:

1: There is a lack of bioinformatic models of sperm trajectories that can form the basis

for more sophisticated classification algorithms.

2: There is currently no clear and unambiguous definition of hyperactivity.
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3: There is currently no automatic and robust classification algorithm to detect hyper-

active sperm.

4: It is difficult to determine the true impact of sperm hyperactivity on fertilization

because of the lack of a diagnostic hyperactivity detection tool.

5: In-vitro fertilization clinics and veterinary sciences lack information on the appro-

priate timeline for hyperactivation of a specimen. It is also unknown whether the

fertilization rate is higher or lower, if the sperm in a specimen becomes hyperactive

more quickly or more slowly.

The contributions in this dissertation concentrate on shedding light on items 1, 2 and 3.
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Chapter 3

Comparative Example of Existing

Measures

In this chapter, we apply selected often used existing WHO measures introduced in chapter

2 on two examples of a typical progressive, and a hyperactive stallion trajectory to allow

a side-by-side comparison. In this chapter we present examples of the following WHO

measures: VCL in section 3.1, VAP (3.2), ALH and BCF (3.3), VSL (3.4) and STR in

section 3.5. We first plotted the original trajectory from their x, y data pairs, applied the

respective WHO measure and overlaid the computed curves, if they exist. In addition to the

graphics, we supply the numerical results for each applied measure. Labels used throughout

this chapter are: p0 denotes the first point of the sperm trajectory and pm, the last point. A

25μm bar indicates the scale included in all the figures of this chapter.
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3.1 Curvilinear Velocity VCL

VCL is the most basic measure of sperm motility (see 2.4.1). The measure simply adds

the lengths of segments between data points in μ m and is divided by the data acquisition

time receive the velocity in μm/s. Figure 3.1 shows the computed VCL values on a typical

progressive and typical hyperactive sperm trajectory. Note the more than doubling (2.7

times) of the velocity in the hyperactivated sperm (II).

progressive  hyperactivated

p
0

p
mp

0

p
m

144.1 μm/s VCL  398.9 μm/s

I II 25 μm

Figure 3.1: Original Progressive (I) and Hyperactivated (II) Sperm Trajectory. The VCL result of
these trajectories are shown.

3.2 Average Path Velocity VAP

The VAP measure (2.4.1) is often used by investigators to smooth the original trajectory

and is the basis of other WHO measure, such as ALH and BCF. This measure works well

on progressive trajectories as in Figure 3.2, but has difficulties in more erratic hyperactive

trajectories. In II of Figure 3.2 the beginning p0 and the end pm of the trajectory cannot

be smoothed by VAP. VAP reduces the velocity advantage seen in VCL between a hyper-

activated and progressive trajectroy. In the numerical results the hyperactivated trajectory
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is now only 1.6 times faster than the progressive sperm.

progressive  hyperactivated

114.1 μm/s VAP   181.0 μm/s

I II 25 μm

p
0

p
m

p
0

p
m

Figure 3.2: Average Path Velocity VAP

3.3 Lateral Head Displacement ALH, Beat Cross Frequency BCF

Both, ALH and BCF rely on the average path velocity (VAP) of 3.2. ALH computes the

largest perpendicular deviation from the VAP of any point of the trajectory. The resulting

distance is multiplied by two. An example of ALH in a hyperactivated trajectory is plotted

as a dotted line in Figure 3.3. ALH is too small to plot for the progressive trajctory. ALH

assumes the original trajectory crosses over the average path in an oscillating manner and

is deceived in erratic or thrashing sperm trajectory patterns, where this regular crossing

pattern does not exist.

Similarly, the BCF is a measure of the oscillation of the original sperm trajectory around

the average path and is only meaningful if such a movement pattern exists.
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progressive  hyperactivated

2.7 μm  ALH   14.9 μm

43.8 Hz BCF   30 Hz

I II 25 μm

1/2 ALH
p
0

p
mp

0

p
m

Figure 3.3: Lateral Head Displacement ALH and Beat Cross Frequency BCF

3.4 Straight Linear Velocity VSL

This WHO measure is used as an indicator for linearity, by taking the distance between

the first point p0 and last point pm of the sperm trajectory (Figure 3.4). This measure

is vulnerable to directional movement changes in erratic or thrashing motility patterns as

observed in hyperactivated sperm. Figure 3.4 picture II shows an example where VSL fails.

VSL could have doubled or be cut in half, if p0 or pm had changed directions.

progressive  hyperactivated

104.7 μm/s VSL   26.8 μm/s

I II 25 μm

p
0

p
m

p
0

p
m

Figure 3.4: Straight Linear Velocity VSL. This measure is less helpful in hyperactivated sperm tra-
jectories (II).
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3.5 Straightness STR

The last example of a WHO measure is STR, a combined measure of VSL and VAP. It

was introduced as an improvement over the linearity measure VSL alone. This measure is

derived by dividing VSL by VAP. The result is presented as a percentage. Figure 3.5 dis-

plays an example of the original trajectory superimposed by VSL and VAP. The computed

STR result for the progressive trajectory is 92%. STR is computed to be 15% for the hyper-

activated sperm trajectory example and is for the reasons listed in 3.3 less meaningful for

irregular shaped trajectories, as observed in most hyperactivated sperm. For completeness

we include a similar measure LIN in this section. LIN is computed by dividing VSL by

VCL, and therefore, like STR, inherits the limitations of VSL.

progressive  hyperactivated

92 % STR     15 %

I II 25 μm

VSL

p
0

p
m

p
0

p
m

70.29 % LIN     5.28 %

Figure 3.5: Straightness STR.
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Chapter 4

Approach

This thesis relies on biological data and therefore requires an interdisciplinary approach

between computer science and biomedicine. For this study spermatozoa from stallions

were chosen, due to their availability and for the safety of laboratory personnel as they are

not exposed to infections from handling the samples. In biomedical sciences, most of the

results obtained from animal studies can be applied to humans, often with minimal modi-

fications. Rather than computationally capturing all possible hyperactivity patterns, which

would have been an almost impossible task, we interpret hyperactive motility of the sperm

physiologically as a search pattern to successfully find and fertilize an oocyte. This leads

to an algorithm based on the effectiveness of the spermatozoon’s searching potential for

finding an egg for fertilization. With this model in mind, we refined and tested established

measures from the literature together with these new algorithms.

As a brief outline of the upcoming chapter, we present first in section 4.1 the definitions

and terminology to help better understand the upcoming chapter. This is followed by a
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description of the experimental setup (in section 4.2) and data collection (4.2.5). Section

4.3 discusses validity followed by a discussion of the technique for distinguishing live cells

from debris (4.4). Finally we present a detailed description of the proposed classification

algorithms in sections 4.5.1 through 4.5.6.

4.1 Definitions and Terminology

The following is a list of basic terminology used in this thesis with their respective defi-

nition. Further details are provided within the appropriate algorithm sections.

1: Trajectory Point: The pi = (xi, yi), (i = 0, ...,m) position of the spermatoza head in

regard to a x, y coordinate system. p0 is the first and pm is the last point.

2: Trajectory or Track: The entire sequence of recorded (x,y) data pairs of one sperma-

tozoon during the data acquisition time of 500 ms. The trajectory points of a full

trajectory will be labelled p0, p1, ..., pm and consist usually of 30 points (m = 30)

3: Segment: The line segment between two chronologically adjacent points (xi, yi) and

(xi+1, yi+1). A trajectory is composed of m− 1 segments.

4: Hyperactivated: Classified as red or 1. The phase of a spermatozoon seen in the

erratic movement patterns.

5: Transitional: Classified as yellow or 2. The phase of a spermatozoon between being

hyperactivated and progressive. Not well defined.

6: Progressive: Classified as green or 3. The initial movement phase of a spermatozoa,

seen in a more directed, non-erractic motility.
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Classification

hyperactivated transitional progressive

red yellow green

1 2 3

Table 4.1: Classification Terminology

4.2 Experimental Setup

4.2.1 Experimental Site

All experimental data collections were performed at Colorado State University in Fort

Collins, Colorado, Department of Biomedical Sciences, Animal Reproduction and Biotech-

nology Laboratory under Professor James Graham. Dr. Graham’s lab specializes in Male

Reproductive Physiology. The sperm trajectory data were obtained from stallion specimens

under Animal Care Protocol Approval Number 07-209A-01.

4.2.2 Hardware

A commercial CASA (Computer-aided Sperm Analysis) device by Hamilton Thorne,

model HTM-IVOS v10 was used to collect the data. The system consists of the IVOS

Analyzer, which integrates a CPU with an optical system (Fig. 4.1) and a camera to track

spermatozoa. A laptop computer with a USB frame grabber was interfaced between the

camera and an IVOS frame analyzer for analog video clip storage. A microscope with a

10x magnification lens and motorized stage control for the specimen slide is part of the

optical system [44]. Slides, coverslips and stage were maintained at 37 oC to minimize
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artifacts due to temperature fluctuations in the preparations.

Figure 4.1: HT IVOS CASA Optical System. On the left side the microscope is shown. Right side
depicts the camera used for frame grabbing of the sample. (Hamilton Thorne with
permission [44]).

4.2.3 Calibration and Settings

The Hamilton Thorne IVOS sperm scanner uses a 640 by 480 pixel sensor attached to a

microscope with a 10x lens. This results in each pixel representing 1.92μm (according to

the manufacturer). In addition, the device’s optic stage was calibrated using a 100 micron

grid Makler1 chamber.

Using the built-in calibration software, the correct magnification was set to be 1.82. The

raw data ASCII output file is calibrated in μm. The scale was successfully verified by

1An optical flat glass slide with a calibrated etched grid.
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reproducing a non−ambiguous parameter as defined by WHO, the straight line velocity

VSL (2.2) with our own software and comparing the result with the IVOS sperm scanner’s

calculation. VSL was chosen, because it simply calculates the distance between the first

and last point of a trajectory and is therefore not prone to interpretation errors. Sperm

movement is tracked by the sensor as the centroid of a set of pixels of the sperm head

with predefined parameters. The location of this centroid is returned as (x, y) data pairs of

an orthogonal coordinate system. Frame acquisition rate was set to 60frames/s and 30

frames were acquired equaling 500 ms. Minimum cell size was set to 4 pixels. Minimum

contrast was 70. Elongation, used to identify spermatozoa from debris and air bubbles, was

defined as the ratio of head width to head length. It was set to 12% < Elongation < 97%.

4.2.4 Specimen Preparation

Fresh stallion ejaculates were used to obtain motility data. Each specimen was washed

2 times and the sperm resuspended in TALP dilute to remove debris from the sample and

to extend the life of the sperm. Briefly, the sample was first suspended in TALP diluent

(Table 9.1) at room temperature. The purpose of the solution is to provide nourishment

and prolong the life of the sperm. The specimen was centrifuged at 25 g for 3 minutes.

Centrifuging orients cells against the gradient of gravity. Dead cells, because of increased

drag, will remain in the middle of the tube, unless they are oriented like the live ones,

while live cells end up with high numbers in the pellet. This process increases the con-

centration of live sperm by approximately 10 to 15%. Another reason for centrifuging

is to reduce seminal plasma in the sample . It contains proteins that inhibit capacitation.

A sperm density count was performed using spectrophotometry (flow cytometry) as de-
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scribed by Hammerstedt [45]. The average sperm count of a stallion is approximately

200 · 106sperm/ml, approximately 5 times higher than human specimens [25, 100]. This

high sperm density would result in an overwhelmingly large number of overlapping tra-

jectories. To reduce ambiguous tracks due to overlap, the sample needed to be diluted to

approximately 20 · 106sperm/ml. Lower density sperm samples also reduce measurement

variations and collisions in the glass slide chamber [108]. Finally, a 6μl sample was placed

on a disposable 1
2
” × 2.0” slide covered with a 1

2
” × 1

2
” coverslip and analyzed. Experi-

ments [13] have shown that this technique results in a gap of 10μm distance, larger than the

largest diameter (10 long × 5 × 2 μm deep) of a stallion sperm, thus confining the sperm

to a 2-D space, while still providing ample space for the helical rotating movement. Cham-

ber depth was shown to be critical for sperm concentration calculations, however depth

was not significant to detect hyperactive sperm cells, which is the focus here [71, 115]. The

volume of the sample and coverslips were kept standardized to allow comparison between

all experimental data collection runs [27].

4.2.5 Data Collection

To avoid animal specific bias, specimens from four different stallions were used. Some

were used once, others repeatedly, however never more than once a day. The distribution

of the sperm in the semen specimens is not homogeneous. Therefore, three measurements

were taken from one droplet, each from different locations within the droplet. Data acqui-

sition settings, as described in section 4.2.3, were kept constant for all experiments. Each

measurement tracks spermatozoa for 0.5 s and stores the tracking data in two ASCII files

on the built-in hard disk. The output data for each trajectory consists of: track identifica-
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3.9

7.0

60.6

centroid
tracked

Figure 4.2: Stallion Spermatozoa. Dimensions of the stallion specimen, Equus caballus, used in
this work. Courtesy of Dr. Graham [40]. They are only slightly larger and have a
similar morphology than human sperm (Homo sapiens). The centroid position of the
sperms’ head is tracked by CASA. Scale is in μm.

tion number, time, trajectory (x, y) coordinate data pairs (x0, y0) ... (xn, yn) as well as

WHO standardized values of VAP, VSL, VCL, ALH, BCF and STR. A second file lists a

summary calculation for all trajectories of one particular recording. The available fields

are date, time, VAP, VSL, VCL, ALH, BCF, STR, LIN, ELONGATION, TOTAL COUNT,

MOTILE COUNT and MOTILE PCT. The meaning of these acronyms are described in

detail in chapter 2 section 2.4. For this thesis, only (x, y) coordinate data pairs are used

and WHO data values, such as VCL, are recalculated using the original WHO definition

(formula 2.1). The stored ASCII files were transfered via floppy disk for classification

analysis.
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4.3 Validity Evaluation

In our case of hyperactivity classification of spermatozoa, we have to consider these

levels of validity, conclusion, internal, construct and external validity. They are mapped to

the different steps seen in figure 4.3.

 sperm trajectory

Classification
      -hyperactive
      -transitional
      -not hyperactive

Curve Linear Velocity
Rotated R. Linearity
Relative Angle Change
Relative Velocity Change
Quadrant Scoring
Expert Classification
Combination , Hybrid

Hyperactivity 
classifications

Theory

Observation

Cause Construct

Outcome

Effect Construct

Treatment

mapping into
geometric problem

2-D
classification
methods

3-D

treatment outcome
construct

1 2

3

4

3

cause-effect
construct

construct
validity

Figure 4.3: Experimental Principles

Conclusion Validity 1©: This threat deals with the statistical conclusion validity. Con-

clusion validity was dealt with by using a large number of tests on a large number of sperm.

Internal Validity 2©: The internal validity is concerned with the treatment, here the clas-

sification algorithms, and the outcome, the classification itself. The data is collected using
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Good Laboratory Practice Standards (GLPS) with a calibrated commercial grade sperm

scanner (4.2.3).

Construct Validity 3©: This validity is concerned about the relationship between theory

of sperm classification algorithms and the observation of the actual classification. In the

natural biological environment, the spermatoza propel themselves in a 3-dimensional way,

however this movement is mapped in the laboratory to a 2-dimensional world. Although the

sperms’ movement is constrained, it is still an established and appropriate motility measure

as shown by other investigators of this field (see section 4.2.4).

External Validity 4©: This validity deals with generalization of the results. The ex-

periments do not differ from routine sperm motility tests performed daily in hospitals or

veterinary clinics. Moreover we apply the proposed hyperactivity classification algorithm

to a study with erectile dysfunction pharmaceuticals to show the feasibility of applying

these algorithms in a practical application. We therefore believe that these results may be

applicable not only in equine but also in Homo Sapiens.

4.4 Identification Methods

Identification separates live, motile, spermatoza from dead sperm, other cell types or de-

bris. It is a precursor for classification, which is only meaningful on live sperm fulfilling

a set of morphological or physiological requirements. The CASA device initially removes

objects that do not fit the criteria set forth in Calibration and Settings. One morpho-

logical criteria used by CASA is the elongation, defined as the ratio of head width to head

length. A ratio of 1 would be a circle and most likely not be a normal sperm head, which

is elongated. In this thesis additional measures are used for identification, such as only
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sperm with a minimal V CL ≥ 50μ m/s are considered. Figure 4.4. shows how sperm are

identified in a flowchart.

Sperm
under investigation

positive 
identification

Sperm accepted for
classification

Debris
impurities

VCl < 25μm/s
non-motile

negative 
identification

Sperm rejected

no

yeselongation ratio ~ 1
OR

Figure 4.4: Identification of Spermatoza.

4.5 Classification Methods

A challenge in classifying biomedical events, such as sperm motility, lies in the non-

homogeneous properties of the cells, between cells and over time. It is not feasible for a

human operator to observe hundreds of sperm through a microscope in the short time they

are motile. Therefore, as in most biomedical experiments, a snapshot of time is used to

represent certain behaviors. This approach has been established as a way to capture sim-

ilar events although the measurements will not be identical. Considering the uncertainty

of biomedical measures, any bioinformatic classification algorithm must be robust, have a

high level of reproducibility and hold up to the ’gold standard’ of manual classification by
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experts in the field.

Several approaches are required to capture and describe the motility changes of a sperm.

Five new measures and one combined measure are introduced in comparison to one es-

tablished existing measure. These measures work either by positive classification or elim-

ination of sperm trajectories. Figure 4.5 shows the concept of the developed measures:

Rotated Rectangular Velocity in section 4.5.6 , Minimum Bounding Square MBS (4.5.7),

Relative Angle Velocity Change RAVC ( 4.5.2.2), Quadrant Scoring QS (4.5.3), Relative

Angle Count RAC (4.5.4) and a combination of the latter, a Logistic Regression Model

(4.5.5). For completeness and for comparison we begin with the existing conventional mea-

sure, Curvilinear Velocity VCL (4.5.1). For classification of hyperactivity we propose three

degrees of hyperactivation: red, yellow and green, where red is a spermatozoid with high

probability to be hyperactive, yellow is a transitional spermatozoid less likely to be hyper-

active and green is a non-hyperactivated, progressive spermatozoid (see section definitions

and terminology 4.1). This is a more realistic approach to classification than existing au-

tomated methods, which often only consider two classes: hyperactive and progressive and

thus must (mis)classify transitional sperm as either hyperactive or not.

4.5.1 Curvilinear Velocity, VCL

This is an existing measure (2.1) endorsed by the WHO [89]. VCL is a direct measure

and the foundation of all derived measures in this research. It captures the absolute distance

a spermatozoon traveled during the data acquisition period and is calculated by adding the

m segment lengths together and dividing by the measurement duration. The result is

presented as velocity in micrometers per second. The capture rate used in this work
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Figure 4.5: Concept of the proposed Classification Algorithms

is a constant of 60 Hz with a total recording time of 500 ms. It has been shown that the

sperm’s velocity increases during the hyperactivation phase and VCL is therefore important

in defining thresholds from known progressive, or hyperactive data sets [19, 55, 102]. The

VCL pseudocode is listed in algorithm 1.

Algorithm 1 Curvilinear Velocity VCL, (T)

1: m ← length[T ]
2: V CL ← 0
3: for i = 0 to < m do
4: d← calculate segment distance T [i]
5: V CL ← V CL + d
6: end for
7: return V CL
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Sperm Trajectory
under investigation

Classifier

hyperactive
red
1

progressive
green

3

transitional
yellow

2

Figure 4.6: High level classification process

4.5.2 Relative Angle Velocity Change RAVC

A hyperactivated sperm changes its direction more radically as opposed to a progressive

sperm with a more homogeneous smoother trajectory [16, 82]. This physical phenomenon

was recognized early on and is listed as the WHO standardized parameter, mean angular

displacement MAD (2.4.1). However, as the name indicates, MAD is expressed as a mean

over the entire trajectory and will smooth out erratic sperm movement changes, the very

feature used to detect sperm hyperactivity, unless they occur often. Often, hyperactivated

sperm, especially in the transition stage, make few, but drastic changes in direction. Thus,

MAD by itself is not suitable to detect these changes. Mortimer in 1999 [83] extended

this measure by multiplying the angle by the length of the following track segment and

called it velocity–angle measure, VAM. However, this approach also used a statistical mean

over the entire trajectory, concluding the measure cannot discriminate between circling and

hyperactivated tracks (2.8.3).

We propose to use a scoring system, rather than statistical means. A score is assigned
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to a sperm that exhibits a sudden erratic angular change beyond a set threshold with its

following segment larger than a previously set length. Our expectation is that this approach

will have a higher specificity ( True Negatives
True Negatives + False Positives

) than MAD or VAM and will

even sense transitional sperm motility changes.

The calculation of RAVC is a two step procedure scoring the trajectory segment angles and

determining the segmental velocity:

4.5.2.1 Relative Angle Score RAS

The first step is to determine the relative angle θk between two consecutive trajectory seg-

ments. Let p0 be the first and pm be the last data point of a sperm trajectory and pk be the

middle point between pk−1 and pk+1 for k = 1, ...,m− 1. Then, the angle θk is defined as:

trajectory

Θk

Figure 4.7: Relative Angle Score RAS. Hyperactivated sperm are defined to have irregular track
patterns. RAS captures relative angle changes and is intended to detect inhomogeneous
patterns.
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θk = ∠ pk−1 pk pk+1 (4.1)

and finally the relative angle is:

Θk = π − θk (4.2)

To capture deviations from straight line motion, we subtract the detected angle θk from

π. The resulting angle ( π ≤ Θk ≤ 2π) will be used to assign scores for RAVC in

combination with a trajectory segment (4.5.2.2).

Let Rk be the score assigned to each computed angle:

Rk =

⎧⎪⎨
⎪⎩

1 for Θk > Θcutoff

0 otherwise
(4.3)

(k = 1, ...,m− 1)

Lastly, the scores Rk are added up to achieve a score for the entire trajectory:

RAS =
∑

1 ≤ k ≤ m−1

Rk (4.4)

Algorithm 2 shows the pseudocode for RAS.
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Algorithm 2 Relative Angle Score RAS, (T)

1: m ← length[T ]
2: RAS ← 0
3: for k = 0 to < m do {go though all segments in T}
4: Θk ← calculate angle (π − ∠ pk−1 pk pk+1)
5: if | Θk |≥ Θcutoff then
6: RAS ← RAS + 1
7: end if
8: end for
9: return RAS Score

4.5.2.2 RAVC

The angle velocity change, RAVC (figure 4.8), combines erratic angular movement changes

(as calculated in section 4.5.2.1), with the velocity changes of each trajectory segment.

Let the adjacent trajectory segment velocity be SV CLk(pk, pk+1), where pk = (xk, yk),

pk+1 = (xk+1, yk+1), and Δt be the recording time (k = 0, ... m − 1). The segment

velocity SV CLk is calculated similar to VSL (2.2):

SV CLk =

√
(xk+1 − xk)

2 + (yk+1 − yk)
2

Δt
(4.5)

Then the score Ck for each segment Sk is calculated as follows:

Ck =

⎧⎪⎨
⎪⎩

1 for Θk > Θcutoff or SV CLk > SV CLthreshold

0 otherwise
(4.6)
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trajectory

Θk

SVCLk

p
0

Figure 4.8: Relative Angle Velocity Change RAVC. An adjacent movement increment is used in
conjunction with the angular change. This helps to differentiate hyperactivated sperm
from progressive sperm with large RAC, but small incremental movements.

A score of 1 is assigned if Θk and its adjacent segment velocity SV CLk reach predefined

thresholds. Thresholds for the angle Θk and velocity SV CLthreshold may have different

threshold values.

Lastly, the scores Ck are added up to achieve a score for the entire trajectory:

RAV C =
∑

1 ≤ k ≤ m−1

Ck (4.7)
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Algorithm 3 Segment Velocity SVCL, (T)

m ← length[T ]
SV CL score ← 0
for k = 0 to < m do

SV CLk ← calculate segment velocity
if SV CLk ≥ threshold then

SV CL score ← SV CL score + 1
end if

end for
return SVCL score

Algorithm 4 Relative Angle Velocity Change RAVC, (T)

1: m ← length[T ]
2: SV CL score ← false
3: RAS score ← false
4: for i = 0 to < m do
5: Θk ← calculate angle (π − ∠ pk−1 pk pk+1)
6: if | Θk |≥ Θcutoff then
7: RAS score ← true
8: end if
9: SV CLk ← calculate segment velocity

10: if SV CLk ≥ threshold then
11: SV CL score ← true
12: end if
13: if RAS true OR SV CL true then
14: RAV C ← RAV C + 1
15: end if
16: end for
17: return RAV C Score
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4.5.3 Quadrant Scoring QS

Quadrant scoring (QS) is an attempt to explore whether a very simple algorithm can be

utilized to classify sperm trajectories. QS counts the occurrences of the trajectory turning

points relative to the previous point in the four quadrants, I, II, III and IV of a Cartesian

coordinate system. The resulting four scores could be useful in interpreting circular or pro-

gressive movements. The case of SI ∼ SII ∼ SIII ∼ SIV could be interpreted as a circular

motion as observed in hyperactivated sperm, while a concentration of scores in one or two

quadrants could indicate smoother, progressive sperm movement.

Conjecture 1: Trajectories with a concentration of QS scores in two or less quadrants may

be progressive.

Conjecture 2: Trajectories with a distributed QS scores in more than three quadrants may

be hyperactive.

This requires a measurement of the dispersion of the data, which can be measured by

its standard deviation σ. A low σ indicates a distribution of QS among the quadrants

(hyperactive), while a high σ shows a concentration of QS in fewer quadrants (progressive).

The standard deviation is defined as: σ =

√
1
n

∑n
i=1

(
QSi − QS

)2
. Where σ is the

standard deviation, n the number of data points (here four quadrants), QSi the quadrant

score of the appropriate quadrant 1 through 4 and QS is the mean of (QS1 +QS2 +QS3 +

QS4)/4 .

Let pk be a previous point of the sperm trajectory, pk+1 the next point of the track and

−→
V QS = (QS1, QS2, QS3, QS4) the quadrant score sum vector and p0 , ..., pm be the ver-

tices in the trajectory. Then
−→
V QS is calculated by:
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trajectory

p
0

Figure 4.9: Quadrant Scoring QS. The intend of this proposed measure is to show the effectiveness
of a simple algorithm for hyperactivity classification.

−→
V QS =

m−1∑
i=0

−→q (pi , pi+1) (4.8)

where
−→
V QS is the vector quadrant score sum and −→q (pi , pi+1) the score for each indi-

vidual segment (4.9).
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−→q (pi , pi+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0, 0, 0) for xk+1 − xk ≥ 0 and yk+1 − yk > 0

(0, 1, 0, 0) for xk+1 − xk < 0 and yk+1 − yk ≥ 0

(0, 0, 1, 0) for xk+1 − xk ≤ 0 and yk+1 − yk < 0

(0, 0, 0, 1) for xk+1 − xk > 0 and yk+1 − yk ≤ 0

(4.9)

The QS results are compared using standard deviation σ .

σ =

√√√√ 1

n

n∑
i=1

(
QSi − QS

)2
(4.10)

progressive hyperactivated

Standard Deviation σ
higher lower

Figure 4.10: QS Interpretation illustrates the behavior of hyperactivated and progressive sperm
track example. A progressive track will most likely score in 1 or 2 quadrants, while a
hyperactivated track will have scores distributed among the four quadrants

where n = 4 represents the four quadrants. QSi is the individual Quadrant Score and

QS the average of the individual scores. Algorithm 15 summarizes the steps above.
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Algorithm 5 Quadrant Scoring QS

1: (Q1...4) ← 0
2: for i = 1 to < m do
3: location← (xk+1, xk, yk+1, yk)
4: if location = first quadrant then
5: Q1 ← Q1 + 1
6: else if location = second quadrant then
7: Q2 ← Q2 + 1
8: else if location = third quadrant then
9: Q3 ← Q3 + 1

10: else if location = fourth quadrant then
11: Q4 ← Q4 + 1
12: end if
13: end for
14: calculate standard deviation(Q1...4)
15: return (Q1...4), standard deviations

4.5.4 Relative Angle Count RAC

The motivation for this is similar to the Relative Angle Score RAS in section 4.5.4, but

with the emphasis on the flagellar motion of the spermatozoa tail, rather than an absolute

angle threshold. The helical tail movement is observed in the 2D as an almost symmetrical

left-right motion. If the sperm is moving in a progressive fashion, the observed left-right

movement should cancel itself. On the contrary, an erratic movement should require an

asymmetrical number of beats. The algorithm computation is similar to RAS (see algorithm

2) with the exception of replacing the angle thresholding with a sign function.

Let Rk be the score assigned to each computed angle and let sgn(Θ) denote the sign of

Θ.

Rk =

⎧⎪⎨
⎪⎩

0 for sgn (Θk+1) 
= sgn (Θk)

1 otherwise
(4.11)
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Lastly, the scores Rk are added up to achieve a score for the entire trajectory:

RAS =
∑

1 ≤ k ≤ m−1

Rk (4.12)

The pseudocode for RAS is listed in algorithm 6.

Algorithm 6 Relative Angle Count RAC, (T)

1: m ← length[T ]
2: RAC ← 0
3: for k = 1 to < m do {go though all segments in T}
4: Θk ← calculate angle (π − ∠ pk−1 pk pk+1)
5: Θk+1 ← calculate angle (π − ∠ pk pk+1 pk+2)
6: if sgn (Θk+1) = sgn (Θk) then
7: RAC ← RAC + 1
8: end if
9: end for

10: return RAS Score

4.5.5 Logistic Regression Model

In order to investigate if the performance of individual algorithms could be improved

by combining them, we turned to a logistic regression model. Logistic regression [18] is

used increasingly in medical and biomedical problems to examine effects of one or more

variables. Here we look at the effects of combining two algorithms, RAC and QS, both

capturing different features of the sperm trajectory. RAC scores a deviation from the left-

right movement of the sperm trajectory by adding a score of one (section 4.5.4). This

captures the regularity of the whipping motion of a progressive sperm flagellum, normal-

ized as a percent of the number of segments. QS describes the relative occurrence of the

sperm location within an orthogonal four quadrant system, expressed as a standard devi-
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ation (4.5.3). In this logistic regression application, the binary response variable can take

on only two possible outcomes, 1 or 0, corresponding to hyperactivated and progressive

states. We initially will classify between hyperactive and progressive sperm trajectories.

After the logistic regression has been applied, transitional margins will be determined on

the basis of the biological properties of trajectories ambiguously classified by the logistic

model. Specifically, several investigators in the past have published criteria for hyperacti-

vated and progressive sperm trajectories [70, 79, 91, 119]. Transitional sperm trajectories

are either not mentioned at all or investigators disagree on their criteria [13, 78, 111]. This

approach improves the analyses in the literature. Consider the following logistic regression

model (equation 4.13). As mentioned above, the response variable is binary 1, 0 and the

probabilities are π and π − 1.

E [Yi] = πi =
exp (β0 + [β1, β2] Xi)

1 + exp (β0 + [β1, β2] Xi)
(4.13)

where E [Yi] is the expected response and Xi are the observations. The index i represents

the observed trajectories. The probability is

πi = P (Yi = 1) and 1 − πi = P (Yi = 0) and β0, β1, β2 are the coefficients of the

logistic regression model.

with Xi =

⎡
⎢⎣ RAC

QS

⎤
⎥⎦ and π = 1

2
we set:

66



www.manaraa.com

4.5. CLASSIFICATION METHODS

π =
1

2
=

exp (β0 + β1RAC + β2QS)

1 + exp (β0 + β1RAC + β2QS)
(4.14)

To solve for x we set x = exp (β0 + β1RAC + β2QS). The equation becomes

1
2
(1 + exp (x)) = exp (x). This reduces to 1 = exp (x) , thus x = 0.

Back-substituting, the line 0 = β0 + β1RAC + β2QS divides trajectories with

π > 1
2

and π < 1
2
.

The logistic regression coefficients β0, β1, β2 are found using the command lrm in R

Statistical Computing Toolset [37, 99]

4.5.6 Rotated Rectangular Linearity RRL

The goal of this new measure is used to express the linearity, or progressiveness, of a

sperm trajectory and therefore allow the elimination of non-hyperactivated sperm. Cur-

rently, the WHO definitions of VSL, LIN and STR are considered the gold standard [13,

60, 71, 79, 122]. The straight linear velocity, as defined by WHO, takes only the first and

last point into account (equations 2.2, 2.6 and 2.7). Clearly, this ignores all data points in

between and will misclassify sperm trajectories which make a final turn towards the end of

the recording while otherwise exhibiting linear motion. However, the Rotated Rectangular

Linearity RRL measure uses a tight fitting rectangle, creating an envelope surrounding the

track. This approach is more robust than VSL and is less prone to errors produced by re-

versal of direction of the sperm trajectory. It does not penalize tracks with turns, because
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it will always return the maximal extent a sperm has travelled. It is calculated similarly to

AMBS , with the exception of rotating the array of trajectory points in 0.1 radiant increments

over π
2
, while calculating the bounding rectangle (a, b) for each iteration and retaining the

maximal side length. The RRL represents the furthest distance the sperm was able to travel

(Figure 4.11). The following details the computation of RRL. Let Θ be the angle, by which

the trajectory is turned. TΘ is then the new rotated trajectory. (xmin (Θ) , ymin (Θ) ) are

the respective values of a minimum point and (xmax (Θ) , ymax (Θ) ) are the respective

maximum values of a point of the rotated trajectory TΘ.

y

x

y

x

y

x

A A’ A”

Figure 4.11: Rotated and transposed trajectories are equivalent, wen using RRL . The RRL mea-
sure is spatially independent and robust.

The minimum xmin (Θ) coordinate of a point of the rotated trajectory TΘ is found by:

xmin (Θ) = min {x | x is the x− coordinate of a point of TΘ } (4.15)

The maximum xmax (Θ) coordinate of a point of the rotated trajectory TΘ is found by:
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trajectory

minimum bounding
rotated rectangle 

b

a

rotated
trajectory

TΘ

Θ

Figure 4.12: Minimum Bounding Rotated Rectangle (RRL). The longest side of the rectangle,
max(a, b),reflects the furthest extend, the sperm was able to reach. It is a proposed
new measure of linearity as improvement over LIN and STR. Θ is the angle, by which
the trajectory is turned.
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xmax (Θ) = max {x | x is the x− coordinate of a point of TΘ } (4.16)

The minimum ymin (Θ) coordinate of a point of the rotated trajectory TΘ is found by:

ymin (Θ) = min {y | y is the y − coordinate of a point of TΘ } (4.17)

The maximum ymax (Θ) coordinate of a point of the rotated trajectory TΘ is found by:

ymax (Θ) = max {y | y is the y − coordinate of a point of TΘ } (4.18)

a (Θ) = xmax (Θ) − xmin (Θ) (4.19)

Then a (Θ) is the length of the side parallel to the x − axis of the minimum bounding

rectangle for TΘ having sides parallel to the axes.

b (Θ) = ymax (Θ) − ymin (Θ) (4.20)
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Then b (Θ) is the length of the side parallel to the y − axis of the minimum bounding

rectangle for TΘ having sides parallel to the axes.

dist (Θ) = max {a (Θ) , b (Θ)} (4.21)

Where dist (Θ) is the longest side of the enveloping rectangle.

The longest rectangular side (LRS) over a rotated trajectory over π
2

is:

LRS = max
{

dist (Θ) | 0 ≤ Θ ≤ π

2

}
(4.22)

Finally, RRL is computed by dividing LRS by VCL (2.1), expressed as percentage. A

larger LRS would be an indicator for a progressive sperm and will result in a larger RRL.

RRL =
max

{
dist (θ) | 0 ≤ θ ≤ π

2

} · 100

V CL
(4.23)

The pseudo code to compute RRL is listed in algorithm 7.

In figure 4.13 a hyperactivated trajectory example (Ia) is altered to show the improve-

ments of RRL versus LIN. The trajectories Ia and Ib are identical with the exception of

swapping the point pm with pm−2, with the effect, that the trajectory tail moved back a

small step. The envelope, or the extent this particular sperm was able to swim increases
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Algorithm 7 Rotated Rectangular Linearity RRL (T)

1: a ← 0 � first side of rectangle
2: atemp ← 0
3: b ← 0 � second side of rectangle
4: btemp ← 0
5: for Θ ≥ 0 to Θ ≤ π/2 by increment do
6: for i = 0 to m do
7: a ← find difference(xmax, xmin) of T [ ]
8: b ← find difference(ymax, ymin) of T [ ]
9: if a > atemp then

10: atemp ← a
11: end if
12: if b > btemp then
13: btemp ← b
14: end if
15: end for
16: end for
17: longestSide← max(a, b)
18: RRL ← longestSide ∗ 100/V CL
19: return RRL
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LIN
I
 = 31.88 %

RRL
I
 = 37.11 %

VCL:
I
 = 309.31 μm/s

hyperactivated progressive

LIN
II
 = 34.80 %

RRL
II
 = 34.79 %

VCL
II
 = 264.43  μm/s

LIN
Ib
 = 25.45 %

RRL
Ib
 = 35.56 %

VCL
Ib
 = 322.73  μm/s

a
III

 = 46.0 μm  
a
III  = 57.39 μm  

a
III  = 57.39 μm  

Ia IIIb

p
0

p
0

p
0p

m

p
m

p
m

Figure 4.13: Effect of linearity on the trajectory. Two trajectory examples (I, II) with comparable
LIN. Track Ia and Ib are identical with the exception that points pm and pm−3 are
swapped, to reverse the track’s direction, without changing the geometric position of
the furthest points. Dotted line is the straight linear velocity (see 2.2). Note how
RRL is unaffected by the slightly altered track Ib, in contrast to a 20.17 % in the LIN
measure.
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only slightly by 1.55% from 37.11%. But the existing measure LIN falsely reduces this

trajectory with a 20.17% penalty. Trajectory II has a similar RRL and LIN but LIN or

RRL alone cannot distinguish between hyperactivated and progressive sperm tracks. This

effect is more dominant in hyperactivated than progressive trajectories (Fig. 6.11).

4.5.7 Minimum Bounding Square Ratio, MBSR

The appearance of a hyperactivated sperm trajectory is frequently illustrated as having

a thrashing, star−spin appearance (Table 2.7). Rather than trying to explain and compu-

tationally calculate the many different shapes of hyperactivated sperm tracks, we interpret

the erratic movements as a search pattern of the spermatozoa to reach the oocyte for fer-

tilization. For example, a hyperactivated sperm with an erratic zig−zag trajectory pattern

would cover a larger area than a progressive spermatoza moving almost linearly (Figure

4.14). Let this search area be Ahull. In order to calculate how effectively the spermatoza is

searching, we have to define another, larger area, that we call the exploration region. It is

intuitive to use for this new area boundaries set by the spermatozoa itself, like the tightest

fit square,AMBS , rather than coming up with, for example, average threshold values. Not

only will each spermatoza set its own exploration region, it also will fit the physiolog-

ical motility properties of the sperm, where a hyperactivated sperm with erratic motility

patterns will have a larger search area Ahull, than a progressive sperm with a smaller Ahull

(Figure 4.15). Thus, we can now compare the area of the trajectory, Ahull with the area of

the exploration region, the minimum bounding square, AMBS and are able to calculate

the search effectiveness of the sperm, called MBSR. Consequently, we are independent

of the actual pattern of the sperm trajectory and have a potential tool to classify the sperm’s
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motility.

A B

trajectory

region

Ahull

Figure 4.14: Sperm Trajectory Search Area Coverage. A zig−zag pattern of a hyperactivated sperm
(A) covers more area (dashed line) than a progressive sperm (B).

A B

exploration

region

AMBS

Figure 4.15: Sperm Trajectory Exploration Region MBS. The zig−zag pattern of a hyperactivated
sperm (A) covers a larger portion of the Minimum Bounding Square area of (A)
(dashed line) than a progressive sperm (B).

Next, the trajectory’s search area Ahull needs to be defined. We use a set of joint con-

vex hulls, an envelope of points of the trajectory, to achieve this goal. The following
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sections describe the formal computational approach for minimum bounding square ra-

tio MBSR. It is divided into the calculation of the trajectory’s search area Ahull (4.5.7.1),

followed by the calculation of the exploration region, the minimum bounding square,

AMBS (4.5.7.2) and concluded with the calculation of the Minimum Bounding Square Ra-

tio, MBSR (4.5.7.3).

4.5.7.1 Trajectory Hull, Ahull

We decided to use convex hulls as an area approximation for the coverage calculation of

the trajectory. Approximation is a reasonable approach, since the sperm trajectories are

biomedical measurements and represent only the momentary situation when they were

recorded. Additional recordings, even from the same spermatoza, will have similar char-

acteristics but will not be identical. The definition of a convex hull can be imagined by

picturing the points of the sperm trajectory as nails sticking out of the plane. Snapping

an elastic band around the nails will minimize its length, contain all the points (nails) and

describe the vertices of the convex hull of the trajectory. Therefore, the convex hull of a set

of sperm trajectory points is the smoothed envelope of the area containing all the points of

its trajectory.

A single convex hull, enveloping the entire trajectory points, might be suitable for circu-

lar sperm patterns, but will overstate the trajectory hull,Ahull for a half−moon like track

shape. To better follow the contour of the sperm trajectory, we propose using multiple con-

vex hulls connected with each other. The following describes an Ahull calculation, suitable

to calculate a single, or multiple connected convex hulls, representing the trajectory search

area Ahull. Connected or joint convex hulls are convex hulls sharing one point for the first
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and the last hull and two points for middle hulls. Figure 4.16 illustrates a sperm trajectory

search area represented as a set of joint convex hulls.

Let Ahull be the entire search area of the trajectory and Ai be a sub convex hull of Ahull,

if multiple convex hulls exist. Let the number of desired hulls be h and m + 1 the total

number of sperm trajectory points. Chapter 6 section 6.8.2 discusses examples of the effect

of the number of hulls on the trajectory hull area Ai. To cover the case of multiple convex

hulls, h > 1, the count of points must be extended by h − 1 points to compensate for the

shared points connecting the hulls. The number of the hull points chull is then obtained by

adding the desired number of hulls to the maximum number of trajectory points and divid-

ing the result by the desired number of hulls. The floor function guarantees a next lower

integer result.

c =

⌊
(m + h)

h

⌋
(4.24)

Require c ≥ 3 as the minimum required to form a convex hull.

Consider the remainder points r, if they exist, as:

r = (m + h) mod h (4.25)

For r = 0, a single convex hull, form the hull as follows:
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hull (p0 ... pc−1) , hull (pc−1 ... p2c−2) , ... , hull (pm−c+1 ... pm) (4.26)

Here p0 is the first and pc−1 is the last point of the first hull and hull(pi...pj) denotes the

convex hull of the points pi, pi+1...pm. c is the number of hulls as calculated in 4.24. The

point pm−c+1 is the first point and pm the last point of the last convex hull of the trajectory.

If r = 1 there is one additional data point. It will be added to the last convex hull:

hull (p0 ... pc−1) , hull (pc−1 ... p2c−2) , ... , hull (pm−c ... pm) (4.27)

For r ≥ 2 a new convex hull can be formed at the end of the trajectory. The minimum

of three points for a convex hull is satisfied even for r = 2, since there is one shared point

from the previous hull:

hull (p0 ... pc−1) , hull (pc−1 ... p2c−2) , ... , hull (pm−r ... pm) (4.28)

The point pm−c is the first point and pm the last point of the last convex hull of the tra-

jectory. Note: An additional hull is added.

The final number of hulls n is:
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n =

⎧⎪⎨
⎪⎩

h for r = 0, 1

h + 1 for r ≥ 2
(4.29)

The area Ahull covered by the sperm trajectory is expressed by summing the areas of the

sub convex hulls Ai:

Ahull =
h∑

i=1

Ai (4.30)

Here Ai is the area of the i − th convex hull. The area of this planar convex polygon is

then computed using standard computational geometry formulas [90]. The pseudocode to

obtain the trajectory hull Ahull is shown in algorithm 8.
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I II
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0

fourth
convex hull

second
convex hull

first
convex hull

third
convex hull

shared point between
two joint convex hulls

Figure 4.16: Trajectories Hull Ahull. I : Sperm trajectory. II : Trajectory with four joint convex
hulls. The sum of these fours convex hulls captures an approximation of the search
area Ahull described by the sperm trajectory.

Algorithm 8 Trajectory Hull Area Ahull, (T, m, h)

Require: (m ≥ 3) AND (1 ≤ h ≤ ⌊
m
2

⌋
) � minimum convex hull conditions

1: Ahull ← 0
2: Atemp ← 0
3: h← desired number of hulls
4: while points remain do
5: put points into hull until all points are used
6: if remaining points ≥ 2 then
7: Thull ← hull points
8: Tconvex hull ← compute convex hull of Thull

9: else
10: add remaining points to previous hull
11: end if
12: Atemp ← calculate Ahull of Tconvex hull

13: Ahull ← Ahull + Atemp

14: end while
15: return Ahull
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4.5.7.2 Exploration Region AMBS

Next we have to define the computation of the area of the exploration region , AMBS . As

mentioned in section 4.5.7 it is a reasonable approximation to set the exploration region,

which the trajectory has to cover in its search by the track itself. Thus, the spermatozoa

defines the trajectory coverage, Ahull and exploration region, AMBS according to its own

individual capabilities, without setting thresholds. A minimum bounding square surround-

ing the trajectory serves this purpose well. It represents the largest area a sperm could have

covered within the data acquisition period.

The AMBS is computed by finding the minima and maxima in the x− and y − axis

(Figure 4.17).

Let T = {po, ... , pm} be the time ordered set of sperm trajectory points and xmin (T ) be

the minimum x−coordinate of a point of the trajectory T .

The minimum xmin coordinate of a point of the trajectory T is found by:

xmin (T ) = min {x | x is the x− coordinate of a point of T } (4.31)

The maximum xmax coordinate of a point of the trajectory T is found by:

xmax (T ) = max {x | x is the x− coordinate of a point of T } (4.32)

The minimum ymin coordinate of a point of the trajectory T is found by:
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ymin (T ) = min {y | y is the x− coordinate of a point of T } (4.33)

The maximum ymax coordinate of a point of the trajectory T is found by:

ymax (T ) = max {y | y is the x− coordinate of a point of T } (4.34)

trajectory

Figure 4.17: Orthogonal Minimum Bounding Square, AMBS , Calculation. AMBS represents
the furthest possible extend of an exploration region the spermatozoa could have
reached.

The four coordinates (xmin, ymin, xmax, ymax) will describe a rectangle, which might
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resemble Ahull of a linear progressive trajectory, defeating the conjecture of a smaller

exploration region coverage by progressive sperm. To compensate for this problem, we

choose the largest side of this rectangle to form the minimum bounding square, thus restor-

ing the physiological properties. The minimum bounding square area ( exploration region)

is calculated as taking the largest side of the rectangle to form a square:

AMBS = (max {xmax (T ) − xmin (T ) , ymax (T ) − ymin (T )})2
(4.35)

The algorithm 9 shows the pseudocode for computing the orthogonal MBS.

Algorithm 9 Trajectory Exploration Region (Orthogonal) MBSorth, (T)

1: AMBS ← 0
2: longestSide← 0
3: for i = 0 to m do
4: a ← find difference(xmax, xmin) of T [ ]
5: b ← find difference(ymax, ymin) of T [ ]
6: longestSide← max(a, b)
7: end for
8: AMBS ← longestSide squared
9: return AMBSorth

The MBS algorithm above returns smaller AMBS for trajectories not parallel to the ar-

bitrary axes of the CASA coordinate system. This error can reach a factor of
√

2 for pro-

gressive sperm tracks running diagonally to the coordinate axes . To compensate for this

error and enchance accuracy, we use an improved version of computing AMBS algorithm

9, rotating the trajectory until the largest AMBS is found. The consideration of rotated tra-

jectories makes AMBS independent of the trajectories’ orientation relative to the artificial
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CASA axes. The pseudocode of the rotated AMBS is listed in algorithm 10. Details on the

trajectory rotation are described in section 4.5.6.

Algorithm 10 Trajectory Exploration Region (Rotated) MBSrot, (T)

1: a ← 0 � first side of rectangle
2: atemp ← 0
3: b ← 0 � second side of rectangle
4: btemp ← 0
5: for Θ ≥ 0 to Θ ≤ π/2 by increment do
6: for i = 0 to m do
7: a ← find difference (xmax, xmin) of T [ ]
8: b ← find difference (ymax, ymin) of T [ ]
9: if a > atemp then

10: atemp ← a
11: end if
12: if b > btemp then
13: btemp ← b
14: end if
15: end for
16: end for
17: longestSide← max(a, b)
18: MBSrot ← longestSide squared
19: return MBSrot

4.5.7.3 MBSR

Finally, to express the search efficiency of each spermatozoon, we compute the propor-

tion of search area covered versus size of the full exploration region as the trajectory hull

area Ahull(4.30) and exploration region, AMBS (4.35.) Figure 4.18 illustrates the MBSR

algorithm:
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MBSR =
Ahull

AMBS

(4.36)

sperm trajectory

with computed minimum
bounding square

computed 4-part hull

Figure 4.18: Minimum Bounding Square Ratio(MBSR). Combining both the Ahull area with the
AMBS is a the new proposed measure of hyperactivity, reflecting the effectiveness on
how well the possible search area was covered by the spermatozoa.
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Algorithm 11 Minimum Bounding Sqaure Ratio MBSR, (T)

1: MBSR ← 0
2: MBSR ← Ahull ∗ 100/AMBS

3: return MBSR
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Chapter 5

Comparative Example of New Measures

In this chapter we apply the new proposed measures of QS (4.5.3), RAC (4.5.4), RRL

(4.5.6) and MBSR (4.5.7) side-by-side on two stallion sperm trajectory examples for better

comparison. The numerical results for the particular new measure are also presented along

with a graphical representation. The scale of the figures is indicated by the 25μm bar

included in all the figures of this chapter.

5.1 Minimum Bounding Square MBSR

The minimum bounding square ratio is computed by calculating the trajectory hull and

exploration region. The minimum bounding square MBS is calculated in two versions. The

first version (section 5.1.2) computes the MBS surrounding the sperm trajectory as recorded

by the CASA device within its arbitrary assigned coordinate system. An MBS obtained

in this manner is not guaranteed to result in the maximum possible square, especially in

diagonally oriented sperm trajectories. The second version compensates for this error by
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(section 5.1.3) rotating the sperm trajectory until a maximal rectangle is detected.

5.1.1 Trajectory Hull

The trajectory search area Ahull is computed as a four part joint convex hull. Fig-

ure 5.1 provides an example of Ahull for a progressive (91.23μm2) and a hyperactivated

(602.18μm2) sperm trajectory (green line). Note in comparison to a progressive trajectory

the 6.6 times larger Ahull of the hyperactivated sperm track. The overlapping of individ-

ual convex hulls in the hyperactivated sperm trajectory is a desirable effect, given that it

increases the Ahull of this type of sperm trajectory.

progressive  hyperactivated

91.23 μm2      A
hull

   602.18 μm2

I II 25 μm

p
0

p
m

p
0

p
m

Figure 5.1: Trajectory region area with a 4-point joint convex hull

5.1.2 MBS and MBSR non-rotated trajectory

The exploration region AMBS of the sperm trajectory is computed by calculating the

minimum bounding rectangle enveloping the trajectory. The largest side of this rectangle

is then used for AMBS . Figure 5.2 illustrates a AMBS for a progressive (1707.34μm2) and

a hyperactivated (992.82μm2) sperm trajectory. The MBSR is then the ratio in percent
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between Ahull and AMBS , in the example 5.34% for the progressive and 60.65% for the hy-

peractivated sperm. Note the 11 fold difference between the two types of sperm trajectories.

progressive  hyperactivated

1707.34 μm2 MBS   992.82 μm2

5.34%       MBSR   60.65%

I II 25 μm

p
0

p
m

p
0

p
m

Figure 5.2: Minimum Bounding Square MBSR on a non-rotated sperm trajectory set.

5.1.3 MBS and MBSR rotated trajectory

The orientation of the sperm trajectory in regard to the coordinate system can affect the

size of the AMBS (Chapter 4 section 4.5.6). To compensate for this error the trajectory

is rotated over π/2 and the largest rectangle is retained. Again, the largest side of this

rectangle is used for the AMBS . Figure 5.3 provides an example of a AMBS obtained

from a rotated trajectory. Note how the progressive trajectory in comparison to the non-

rotated example of Figure 5.2 needed to be rotated over almost π/2 until the maximal area

(2561.11) was detected. In this example, the rotated MBS compensated for an error of

approximately 50% over the non-rotated method in the progressive example, helping to

differentiate better between progressive and hyperactivated sperm, by reducing the MBSR

from 5.34% in Figure 5.2 down to 3.56%.
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The non-rotated hyperactivated trajectory of Figure 5.2 already produces, as desired, a

large MBSR. The hyperactivated sperm trajectory example of 5.3 shows that the rotation

keeps the large MBSR. The hyperactivated sperm trajectory required only a minor rotation

to detect the maximal AMBS of 1026.20μm2, a small increase in comparison to the non-

rotated AMBS of 992.82%. The resulting MBSR remained approximately the same with

58.11% versus 60.65% for the non-rotated track.

progressive  hyperactivated

2561.11 μm2 MBS   1036.20 μm2

3.56%         MBSR     58.11%

I II

25 μm

rotated MBS
p
0

p
m

p
0

p
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Figure 5.3: Minimum Bounding Square MBSR on a rotated sperm trajectory set

5.2 Rotated Rectangular Linearity RRL

RRL is an improvement of the existing WHO measure LIN. It is computed in the same

fashion as the rotated AMBS , but as LIN, divided by VCL. The result is presented in percent.

Figure 5.4 shows the computed minimum bounding rectangle used for RRL calculation on

a progressive and hyperactivated trajectory. RRL improved the LIN from 5.28% to 16.27%.

As seen in the chart, RRL is less prone to directional changes of the first (p0) and last point
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(pm) of the trajectory. For this progressive example, RRL (70.28%) is identical to LIN

(70.28%), since the first and last point of the trajectory are part of the VSL and are also part

of the minimum bounding rotated rectangle. RRL is an improvement for hyperactivated

sperm trajectories and returns the same or better values for progressive sperm. The pro-

gressive trajectory example of Figure 5.4 (21.43%) example exhibits few movements in the

same direction, an indication for a linear moving sperm. In contrast, in the hyperactivated

sperm direction changes are frequent (66/67%).

progressive  hyperactivated

70.28% RRL 16.52%
70.28% LIN 5.278%

I II
25 μm

p
0

p
m

p
0

p
m

Figure 5.4: Rotated Rectangular Linearity RRL

5.3 Relative Angle Score RAS

RAC is an indicator for symmetrical movement of the sperm, by canceling relative left-

right and right-left movements of two consecutive points of the sperm trajectory, but scoring

one otherwise (Chapter 4 secton 4.5.4). A red dot, starting from p0 of the trajectory in

Figure 5.5 indicated a movement of the sperm in the same direction. A green dot identifies

a left-right or right-left movement that is not being scored. The scoring result is normalized
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over the entire amount of point of the trajectory to compensate for differences in the number

of points.

progressive  hyperactivated

p
0

p
mp

0

p
m

21.43%     RAC   66.67%

I II 25 μm

Figure 5.5: Relative Angle Score RAS. A red dot follows two prior consecutive angles with the
same sign. Change in color indicates a change in the direction of the sperm trajectory
angle. The progressive trajectory (I) has 6 occurrences, where consecutive angles have
the same sign. The hyperactive trajectory (II) has 18 occurrences where consecutive
angles have the same sign.

5.4 Quadrant Score QS

QS is another linearity measure, by scoring the relative occurrence of the next point of

the sperm trajectory in the quadrants of a Cartesian coordinate system. The scores are

kept for each quadrant and the result is returned as standard deviation. To illustrate the

effect of QS on a sperm trajectory we assigned a different color for each quadrant (I=red,

II=blue,III=green,IV=yellow) and plotted these colors for the points of a progressive and

hyperactivated sperm trajectory (Figure 5.6 ). The individual quadrant scores are plotted in

the corners of the chart.

The transitional sperm trajectory has a more linear pattern and scores mainly in the

second (8) and third quadrant (18), seen in the blue and green dots. There are only three
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scores in the fourth quadrant. This is reflected in the QS score of 7.89. By contrast, the

relative position of the hyperactivated sperm trajectory points occur almost evenly in all

quadrants, seen in the almost evenly distributed color dots in the hyperactivated trajectory.

progressive  hyperactivated
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Figure 5.6: Quadrant Score QS
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Chapter 6

Evaluation and Validation of

Classification Approaches

Each classification algorithm underwent an analysis on training data and on a random test

data set. The training data set was used to determine boundaries for hyperactivated and

progressive sperm tracks as well as transitional trajectories. Performance was then mea-

sured on the test data set. Descriptive statistics are used to present these results. Results are

individually summarized in a table which reports correct classifications as well as misclas-

sifications. A diffusion matrix summarizes classification performance. For validation, we

retrospectively examined the test data using a box plot with the previously detected bound-

aries overlaid. Finally, a summary histogram is presented to compare the side-by-side and

ranked performance of the existing and novel classification algorithms developed.

This chapter is organized as follows: First, the general criteria for the trajectory data sets

in this analysis are presented (section 6.1), followed by a detailed description of the training
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data (6.1.1) trajectories and test data trajectories in section 6.1.2. The analysis begins with

results on the existing and widely used VCL method 6.2, then RRL is compared directly

with the existing LIN measure (6.3). In section 6.4, RAVC results are presented. Section

6.5 and 6.6 cover the analysis of RAC and Qs respectively, and the combining of these two

measures using logistic regression is presented in section 6.7. Lastly, the MBSR results are

described in section 6.8 with details of the trajectory hull (6.8.1), optimal trajectory joint

convex hulls (6.8.1) and expected MBSR values in section 6.8.2.

6.1 Spermatozoa Trajectory Data

The trajectory data were collected from a pool of seven different stallions over the course

of several months. Some stallions were used multiple times, however, no samples were ever

collected on the same day. Fresh ejaculate was always obtained and processed as described

in section 4.2.4.

6.1.1 Training Data Set

As discussed in chapter 2, there is no consensus among experts in the field for the defi-

nition of hyperactivated or progressive trajectories. This makes transitional trajectories, by

nature the state of the sperm on the verge between progressive and hyperactivation, even

more difficult to standardize and classify. To reduce ambiguity in the selection of sperm

patterns of our control dataset, we therefore decided on two (hyperactivated and progres-

sive), rather than three classifications including transitional trajectories. One file containing

40 hyperactivated and one file containing 40 progressive trajectories classified by experts

in the field were used as controls to detect boundaries and thresholds. The trajectories came
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from five different stallions, sampled on five different laboratory days. The training data

contained untreated and treated specimens, randomly selected for each group of hyperacti-

vated and progressive trajectories. The treated trajectories were obtained from the MBSR

application described in Section 7.

Progressive Hyperactivated

Figure 6.1: Training Data Set Excerpt. The whole file contains forty expert selected hyperactivated
and forty progressive trajectories. A similar excerpt of the same files with trajectory
convex hulls and Minimum Bounding Rectangle can be found in appendix 9.1

6.1.2 Test Data Set

The trajectories in the test data file came from two stallions, different from the ones used

in the training data described above. The test data included four random files containing
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18, 21, 52 and 47 trajectories. To retain the biological validity of the test data, all measure-

ments of the droplet were included without further processing the data. Two of the files

were pharmaceutically treated samples and two were untreated. The test data was clas-

sified by experts in the field into hyperactivated, transitional and progressive trajectories.

The test data was first classified into hyperactivated and then progressive trajectories, so

more ambiguous transitional trajectories were determined last. A trajectory was excluded

from the classification, if either the expert or the algorithm decided it was unclassifiable.

“Unclassifiable” was defined to be too small in the printout for the expert in the field and

not meeting a threshold of 50μm/s for the algorithms. This resulted in one more rejection

of a progressive trajectory reducing the classifiable sperm trajectories to 29 hyperactive, 25

transitional and 70 progressive trajectories.

Figure 6.2: Test Data Set Excerpt. The file is composed of 138 random trajectories from 4 droplet
scans of 2 stallions, different from the ones used in the training data set. A similar
excerpt of the same file classified can be found in appendix 9.2
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hyperactivated transitional progressive classified total rejects Total Tracks

29 25 71 125 13 138

Table 6.1: Test Data Trajectories Expert Classification Results. Note: An individual algorithm can
increase the number of rejected trajectories. The total number of classifiable tracks are
listed within the individual algorithm section.

hyperactive

transitional

progressive

25 29

71

Figure 6.3: Training Data Classifiable Tracks represent a typical mixture of progressive and hy-
peractivated trajectories. n = 125. One more progressive trajectory was rejected
by the algorithm threshold of 50μm/s reducing the progressive set to 70 classifiable
trajectories.

6.1.3 Diffusion Matrix

The classification results of each algorithm were mapped into a diffusion matrix. The

x-axis represents the classification of the expert in the field (True Classification) and the

y-axis the classification of the algorithm. The classification levels are labelled in the colors

red, yellow and green according to Figure 6.4. The upper left hand corner shows the clas-

sification agreement of hyperactivated sperm (red) and the lower right corner the one for

progressive. The individual classification results as well as the absolute values and percent-
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ages and the all-over classification performance of each algorithm tested are presented. The

center displays the results for matches for transitional sperm trajectories. The horizontal

gray arrow represents the location of false positives, meaning trajectories wrongly classi-

fied as hyperactive by the algorithm. The vertical arrow is the location of false negatives,

where hyperactivated trajectories are missed as such by the algorithm. The diagonal gray

arrow indicates the location of correctly classified sperm trajectories (Figure 6.4). Expert

classification is synonymous with true classification in the diffusion matrix.
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Figure 6.4: Diffusion matrix explanations.
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6.1.4 Classification Boundaries

The training data served as a basis to define threshold boundaries for hyperactivated,

transitional and progressive trajectories. Although the training data did not contain transi-

tional trajectories, biologically, these transitional trajectories are defined to occur between

the progressive and hyperactivated state. For VCL (6.2), RRL (6.3), RAVC (6.4), RAC

(6.5) and QS (6.6) box plots were utilized for boundary detection. Two box plots, one

representing the hyperactivated and one the progressive sperm trajectories of the training

data set, were produced from each algorithm. In an ideal case, a clear separation of the

minimum or maximum whiskers of these box plots was observed. In such a case, the range

between the minimum and maximum of either the hyperactivated and progressive box plot

whisker was used as transitional threshold. If there was an overlap between the two box

plots, we either used the minimum to maximum whiskers as threshold, or the quartiles,

whichever resulted in the smaller range.

For the logistic linear regression (6.7) a band around the computed regression line was

used as threshold boundaries.

Similarly for MBSR (6.8.3), a band surrounding the the intersection of the MBSR thresh-

olds of hyperactivated and progressive training data trajectories were used.

6.1.5 Retrospective Threshold Analysis

After completion of the classification analysis of each algorithm, we applied the com-

puted classification boundaries from the training data to the test data, including transitional

trajectories, in an effort to find out if a different set of thresholds could have improved the

classification outcome. First we looked at the statistical distribution of hyperactivated, tran-
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sitional and progressive sperm trajectories of the test data after applying each algorithm.

Next, we examined the effect on the test data as a result of changing the upper or lower

threshold bound computed from the training data and whether or not the three classifica-

tions of hyperactivated, transitional and progressive could have been improved. After that,

we looked at the effect of individually changing the upper or lower threshold bound and

at shifting the threshold band. Subsequently, we looked at the threshold impact, of clas-

sification on only hyperactivated and progressive trajectories, without transitional tracks.

Transitional sperm trajectories have been problematic to classify throughout this disserta-

tion, because of the lack of definition for this sperm group. Figure 6.5 shows the labeling

used in this retrospective analysis of VCL, RRL, RAC, QS and MBSR. For the retrospec-

tive analysis of the logistic regression a new regression line was computed based on the

test data and plotted together with the regression line from the training data and will be

discussed in more detail within the results of each tested algorithm.

ProgressiveTransitionalHyperactivated

Progressive threshold

Transitional range

Hyperactivation threshold

Box-and-Whiskers Plot of Test Data according
to the Algorithm Tested

Threshold boundaries
as computed from
the training data

Figure 6.5: Labeling Example for Retrospective Analysis Explanations for VCL, RRL, QS and
MBSR algorithms.
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6.2 Curvilinear Velocity Analysis, VCL

This measure in conjunction with LIN is currently the gold standard to classify hyper-

activated sperm and is included here for completeness and comparison. The velocity of

hyperactivated sperm was reported by several investigators to be substantially higher than

in progressive sperm [3, 13, 59].

Threshold Boundaries: Figure 6.6 compares hyperactive and progressive trajectories

of the training data set. Two distinct separate distributions of progressive and hyperac-

tivated sperm trajectories are visible (Figure 6.6 and 6.7). According to section 6.1.4 ,

we decided to use the maximum value of the progressive set (258.98 μm/s) as the upper

boundary for progressive sperm and the minimum of the hyperactivated control trajectory

(295.52 μm/s) set as lower boundary of hyperactivated sperm trajectories (Table 6.2). The

transitional sperm trajectories will fall in between as 295.52 μm/s > Transitional >

258.98 μm/s.

Hyperactivated Progressive

Min. 295.52212 87.28792

Max. 598.16099 258.97935

Median 426.83725 169.31328

Mean 427.58152 168.95088

Table 6.2: VCL Training Data Statistics. Values in μm/s.

Classification Analysis: The diffusion matrix analysis of Figure 6.8 on the test data

exhibits a different observation than the one on the training data. Only 51.72% of hyperac-

tivated and 20% of transitional sperm trajectories of the test data were correctly classified.
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Figure 6.6: Training data VCL histogram containing 2 x 40 progressive and hyperactivated sperm
. Hyperactivated: Mean: 427.58 ± 74.40μm; Median : 426.84μm; Min. :
295.52μm; Max. : 598.16μm. Progressive: Mean: 168.95 ± 32.35μm; Median :
169.31μm; Min. : 87.29μm;Max. : 258.98μm

However, VCL was able to classify 91.43% of the progressive trajectories. Seven sperm

trajectories were falsely classified as being hyperactivated (False Positives) and 14 trajec-

tories were missed by the algorithm as being hyperactivated (False Negatives). The total

correct classification rate was 84 out of 124 trajectories or 67.74%. This is a poor result, es-

pecially when considering that VCL is currently the gold standard for sperm hyperactivity

classification.
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Figure 6.7: VCL Training Data Box Plot. Hyperactive and progressive VCL sperm trajectory values
are clearly separated.
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Figure 6.8: VCL Classification Matrix.
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Figure 6.9: VCL Retrospective Analysis. Contrary to the training data set, the VCL ranges of hyper-
activated, transitional and progressive classification groups in the test data markedly
overlaps and is a reason for the inadequate classification performance of this algo-
rithm.

Retrospective Analysis: The reason for the poor performance of the classification us-

ing VCL can be seen in a retrospective analysis of Figure 6.9 of the test data. We plotted

the distributions of the three classification groups of hyperactivated, transitional and pro-

gressive sperm trajectories and superimposed the threshold boundaries detected from the

training data set. Contrary to the training data set, the test data does not display a clear sep-

aration between hyperactivated and progressive classification groups as seen in the training

data. For example, almost half of the transitional trajectories lie within three quartiles of

the progressive classification group and more than three quarters are within the hyperacti-

vated group. This makes a distinction between these three classification groups impossible
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using the VCL method. Choosing a different lower bound threshold could have improved

hyperactivation classification at the expense of progressive and transitional sperm trajecto-

ries. Without the transitional trajectory group, VCL might have been a better, but not ideal

candidate as a hyperactive and progressive classifier.

6.3 Rotated Rectangular Linearity RRL in comparison with LIN

Hyperactivated sperm trajectories have erratic movement patterns, resulting in reduced

linearity (LIN). The linearity measure can therefore be used to eliminate progressive sperm

trajectories from the pool of sperm trajectories of hyperactivated, transitional and progres-

sive sperm. In this section we present the advantage of RRL over LIN. Rotated Rectangu-

lar Linearity (RRL) removes an imperfection of the existing sperm linearity, LIN measure

(Chapter 4 Section 4.5.6). In this section we evaluate RRL and LIN in a side-by-side com-

parison. First, we examine the effect of RRL on hyperactivated and progressive sperm

trajectories of the test data set (Figure 6.10). Since both measures, LIN and RRL, com-

pute a similar feature of the sperm trajectory (Chapter 2 Section 2.6 and Chapter 4 Section

4.5.6), we subtracted the result of LIN from RRL and plotted the difference as relationship

to the velocity (VCL) of the sperm trajectory. A positive value is to be expected, if RRL

indeed returns in a larger value than LIN and a negative difference otherwise. The exist-

ing LIN measure underreported the linearity in almost all hyperactivated trajectories (black

triangles) by 10 - 18% of the training data set. LIN even underestimated the more lin-

ear progressive trajectories, especially in trajectories with higher velocity of approximately

200μm/s. Give that RRL and LIN are related, we expect similar classification perfor-

mance. The advantage of RRL is the robustness in reliably returning a linearity measure
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Figure 6.10: RRL-LIN Comparison of the training data set. The chart shows Δ(RRL−LIN). The
current standard measure LIN underreports linearity, expecially in shorter hyperacti-
vated trajectories. A: LIN underreported the track linearity. B: RRL underreported
the track linearity.

even in erratic hyperactivated sperm trajectories, were LIN falls short.

Threshold Boundaries: The RRL and LIN threshold boundaries (Figure 6.11) were

found by using the small overlap of their whiskers observed in the box plot in the training

data. The LIN thresholds boundaries are therefore hyperactive ≤ 31.36%, progressive ≥
37.66% with transitional trajectories falling in between. RRL increases the linearity of hy-

peractivated sperm trajectories (Figure 6.10) and poses the risk of diminishing the linear-

ity differences achieved by the LIN measure. The benefit of RRL is the robustness and

not being less affected by directional changes of the first or last points of the trajectory.
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The risk did not materialize. RRL reduces the range of hyperactivated (min-max range

13.93% − 39.96% for RRL vs. 1.5% − 37.66% for LIN) and in progressive trajectories

(min-max range 36.77% − 86.21% for RRL vs. 31.36% − 86.28% for LIN . The RRL

threshold boundaries are hyperactive ≤ 36.77%, progressive ≥ 39.96% and as before

with the LIN measure, transitional trajectories falling in between.
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Figure 6.11: RRL LIN Comparison on the Control. RRL reduces the range in both, the hyperacti-
vated and progressive sperm trajectories of the training data set.
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RRL LIN

Hyperactivated Progressive Hyperactivated Progressive

Min. 13.926153 36.76923 1.569333 31.36088

Max. 39.960688 86.26163 37.660138 86.27990

Median 20.941179 62.22934 18.253005 61.81596

Mean 22.837008 62.63089 18.350469 61.95868

Table 6.3: RRL - LIN Training Data Statistics.

Classification Analysis: Table 6.4 summarizes the classification results of RRL versus

LIN. The new proposed RRL measure was able to improve hyperactivation classifiaction

by approximately 10 percentage points from 82.76% to 93.10%. No improvement was

observed in the transitional classification and a slight reduction of approximately 3% from

98.59% for LIN to 95.77% for RRL was seen.

The diffusion matrix (Figure 6.12) again displays the excellent classification perfor-

mance of hyperactivated and progressive sperm trajectories only. But transitional trajecto-

ries are poorly classified (24%) and come with a high number of false positives (15/25, 60%),

where RRL classifies a trajectory incorrectly as hyperactive, and a low number of false

negatives (2). While the false positive number is high, it mainly resulted from a misclassi-

fication of transitional trajectories, whose boundaries were difficult to define to begin with

(section 6.1.1). More importantly, no hyperactivated sperm trajectories were misclassified

as progressive or vice versa. Overall detection performance for both, RRL and LIN was the

same with 80.65%. While the overall classification rate is the same, RRL classified hyper-

active trajectories with 27/29 (93.10%) better than LIN with 24/29 (82.76%). These results

show that both methods can distinguish well between hyperactive and progressive sperm,

with RRL having an edge over LIN in the more important classification of hyperactivated
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sperm trajectories, but both fail in detecting transitional sperm trajectories.
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Figure 6.12: RRL Diffusion Matrix.

RRL- LIN Results Correct Classification

Absolute Percent

Algorithm hyperactivated transitional progressive hyperactivated transitional progressive n

RRL 27 6 67 93.10 24.0 95.71 124

LIN 24 6 70 82.76 24.0 100 124

Table 6.4: RRL and LIN Classification Summary.

Retrospective Analysis: Figure 6.13 displays the retrospective analysis of the test data

with RRL training data boundaries. As in the training data, RRL separated the hyperacti-

vated from the progressive trajectory classification group (RRLhyper−max = 37.82% and

RRLprogressive−min = 38.55% ). This explains the high positive classification rate for these

two groups. As with VCL before, the transitional trajectories are also a continued problem
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for RRL. Almost three quartiles of the transitional trajectories lie within the hyperactivated

group and approximately one quartile within the progressive classified trajectory section.

The upper threshold boundary (39.35%) detected by the training data almost perfectly

classifies progressive trajectories and missed only one out of 70 progressive trajectories.

Similarly, the lower bound (36.76%) captures all but two of 29 hyperactivated sperm tra-

jectories. Little can be done to improve these boundaries without diminishing the already

poor performance on the transitional sperm group. Any shift of the boundaries to improve

transitional trajectory classification would come at the expense of hyperactivated or pro-

gressive sperm trajectories.
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Figure 6.13: RRL Retrospective Analysis

111



www.manaraa.com

6.3. ROTATED RECTANGULAR LINEARITY RRL IN COMPARISON WITH LIN

As for the VCL algorithm before, RRL maybe best used for hyperactivated and progres-

sive trajectory classification, without considering transitional sperm trajectories.

Again as with VCL before, without transitional sperm trajectories, RRL may be an ex-

cellent method to classify hyperactivated and progressive sperm.
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6.4 Relative Angle Velocity Change RAVC

We examined 1079 hyperactivated and 1105 progressive segment angles of sperm tra-

jectories of the training data set (Figure 6.14 part I). No significant difference between

hyperactivated and progressive angles was found (p = 0.6412). This confirms parts of

the findings of Mortimer et al. [83], who created a similar new measure called VAM by

multiplying trajectory angles with segment velocity (Chapter 2 Section 2.8.3). These inves-

tigators found a significance only in ‘non circling’ sperm trajectories. One research goal of

this dissertation was to find a generalizable solution for sperm hyperactivation classifica-

tion, without restricting the algorithm to specific hyperactivation patterns, such as ‘circling’

or ‘non circling’ . This excludes the relative segment angle as viable classifier for this dis-

sertation.

The second element of this algorithm makes use of the segment velocities that is highly

significant (p < 2.2 10−16) between hyperactivated and progressive trajectories in the train-

ing data set (Figure 6.14 part II). This does not come as a surprise. The sum of all segment

velocities of a trajectory is VCL. An increase in VCL in hyperactivated sperm trajectories

has been reported by investigators (Section 4.5.1). But the ambition of the RAVC was to

develop an algorithm combining trajectory angles and velocities to capture the erratic mo-

tion of hyperactivated sperm trajectories. Descriptive analysis failed to reveal a relationship

between segment angles and segment velocities. No further analysis is performed with this

algorithm.
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Hyperactivated Progressive

N 1079 1105

Min. 0.0788112 0.1153500

Max. 178.6204207 175.0013911

Median 102.3892422 75.2966997

Mean 94.0738151 74.0496028

Table 6.5: Trajectory Angles Training Data Statistics. Angles are in degrees.
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6.5 Relative Angle Count RAC

This algorithm is designed to capture a deviation from the symmetry of the flagellum

movement of the sperm. This measure cancels two consequent left-right or right-left seg-

mental movements of the sperm and assigns a score otherwise. The result is normalized

over the entire sperm trajectory to compensate for the varying number of total data points

of the trajectory. RAC is then expressed as a percentage for the entire trajectory. As such, it

is another measure of linearity, a feature of progressive sperm trajectories that can be elim-

inated from the pool of trajectories for hyperactivity classification. As anticipated, this bio-

logical phenomenon is reflected in the statistical results of the training data. Hyperactivated

sperm (RAChyper−min = 3.85% to RAChyper−max = 64.28%) display a much wider devi-

ation from a symmetrical flagellar beat than progressive sperm (RACprog.−min = 0.0% to

RACprog.−max = 16.02% (Table 6.6). Unfortunately, almost all trajectories of the training

data that are classified as progressive lie within the lower half of the data for hyperactivated

trajectories.

Threshold Boundaries: The ranges of hyperactive and progressive tracks overlap sub-

stantially, making the minimum and maximum whiskers of the box plot unusable for clas-

sification (Figure 6.15). As boundaries we chose the first and third quartile of the hy-

Hyperactivated Progressive

Min. 3.846154 0.0

Max. 64.285714 35.714286

Median 37.037037 14.285714

Mean 36.361381 16.018586

Table 6.6: RAC Training Data Statistics. Normalized relative count.
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Figure 6.15: Relative Angles Count Box plot of the training data set.

peractivated and progressive trajectory set, respectively. The lower boundary for sperm

classified as hyperactivated falls at 28.0% and the upper boundary for sperm classified as

progressive at 21.43%, defining the classification thresholds for transitional trajectories as

21.43% < transitional < 28.0%. Considering the overlapping distributions, choosing

the quartiles as boundaries is an acceptable solution, since it guarantees a separation of 3
4

of the hyperactivated and 3
4

of the progressive trajectories. As in the algorithms before,

this assumes that transitional trajectories are falling in between.

Classification Analysis: The classification results for the RAC algorithm can be seen in

Figure 6.16. Despite the intriguing theory of translating asymmetrical flagellar movement

of the sperm as a score, the all-over classification performance was only 50.81%. In par-

ticular, only 12 out of 29 (43.38%) of hyperactivated and only 46 out of 70 (65.71%) of

progressive trajectories were correctly classified. The number for correctly classified tran-
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sitional trajectories was even lower with 20.0%. Moreover, RAC produced 22 (55.71%)

false positives and 17 (58.62%) false negative classifications. With these results, RAC did

not dominate any of the three classification categories of hyperactivated, transitional and

progressive.

red yellow green

R
A

C
 A

lg
o

ri
th

m

Expert

re
d

ye
llo

w
g

re
e

n

 29  25  70

 33

 29

 62

124

12 10 11

11  5 13

 6 10 46

RAC Diffusion Matrix

red yellow green

C
la

ss
ifi

e
d

 b
y 

R
A

C
 A

lg
o

ri
th

m
 

True Classification

re
d

ye
llo

w
g

re
e

n

 29  25  70

 36

 44

 44

124

12/29

43.38%

10/25

40.0%

11/70

15.71%

11/29

37.93%

5/25

20.0%

13/70

18.57%

6/29

20.69%

10/25

40.0%

46/70

65.71%

63/124   50.81%

correctly classified

Figure 6.16: Relative Angles Count Classification Matrix.

Retrospective Analysis: Contrary to the training data, the test data does not show a 3
4

separation between the progressive and hyperactive trajectories (Figure 6.17). The maxi-

mum of the distribution whiskers of the box plots lie close together (Hyperactivatedmax =

48.21%, Transitionalmax = 43.48%, Progressivemax = 42.86%). The outlier data point

of 65.39% in the hyperactivated group falls more than 1.5 times outside the interquartile

range of 16.07% and is not being considered in this analysis. Approximately half of the

transitional trajectories of the test data set fall within 3
4

of the hyperactivated trajectory

distribution. Similarly, the other half of the transitional trajectories lie within 1
2

of the pro-
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gressive classification distribution. There is no better placement of the threshold boundaries

to improve the classification rate with each classification group without penalizing either

one. As with the prior algorithm, RAC classification can be improved without the transi-

tional trajectory group. In this case, the upper and lower boundary could be replaced with

a single threshold (23.22%) placed between the lower quartile (21.43%) of the hyperacti-

vated and the upper quartile (25.0%) of the progressive trajectories. In the best case, this

would correctly capture approximately three quartiles of the hyperactivated and three quar-

tile of the progressive trajectories as observed in the training data set. But this improvement

comes at the expense of classification of the transitional trajectories.
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Figure 6.17: RAC Test and Training Data Outcome Comparison
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6.6 Quadrant Scoring QS

Similar to RAC, the QS algorithm attempts to capture a deviation from a linear move-

ment of the sperm trajectory by counting the occurrence of the sperm location relative to a

2D quadrant Cartesian coordinate system. The standard deviation over these quadrants is

used as an indicator for hyperactivation. A higher standard deviation is to be expected for

a progressive, more linear, and a lower standard deviation for an erratic moving or circling

hyperactivated sperm (Section 4.5.3). Table 6.7 shows the standard deviation of hyperac-

tivated sperm (QShyper−min = 0.0% to QShyper−max = 5.83%) is lower than the standard

deviation of progressive sperm (QSprog.−min = 3.78% to QSprog.−max = 10.63%).

Hyperactivated Progressive

Min. 0.000 3.775

Max. 5.852 10.626

Median 2.638 7.089

Mean 2.708 6.980

Table 6.7: QS Training Data Statistics.

Threshold Boundaries: The small overlap of the maximum hyperactive (5.86) and the

minimum progressive (3.78) whiskers of the box plot training data set are chosen as thresh-

old boundaries (Figure 6.18). Transitional trajectories will fall within 5.86 > transitional >

3.78. The maximum value of the hyperactivated (5.83) training data set is close to the value

of the first quartile (5.73) of the progressive set and the minimum value of the progressive

(3.78) training data set is identical to the value of the third quartile (3.78) of the hyperacti-

vated set. As an alternative to the minimum and maximum, the first hyperactivated and the
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third progressive quartile could have been used. These thresholds separate three quartiles

of the hyperactivated and three quartiles of the progressive trajectories. A classification

detection rate in this range should be expected.
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Figure 6.18: Quadrant Scoring Training Results.

Classification Analysis: Figure 6.19 displays the classification results of the QS algo-

rithm. Indeed, as the training data threshold suggested, almost three quartiles of the hyper-

activated trajectories were correctly classified (72.41%). This rate was lower for progres-

sive (57.14%) and transitional trajectories (48%). But QS produced a high number of false

positives (16/51.14%) and false negatives (8/27.59%). The all-over correct classification

for the QS algorithm was 58.87%.

Retrospective Analysis: As observed in the training data, the test data is separated by
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Figure 6.19: Quadrant Scoring Diffusion Matrix.

the third quartile (3.86) of the hyperactivated and the first quartile (5.08) of the progres-

sive trajectory classification group (Figure 6.20). Half of the transitional trajectories lie

within more than half of the hyperactivated sperm trajectories. But the quartiles of transi-

tional (third quartile 4.83) and progressive (first quartile 5.07) trajectories do not overlap.

A slightly better classification result for the hyperactivated and progressive classification

group could have been achieved with this test data by raising the lower threshold from 3.78

to the third quartile of the hyperactivated trajectories (3.86) and lowering the upper bound

from 5.85 to the first quartile (5.08) of the progressive trajectories. Again, this improvement

would come at the expense of the transitional trajectories. In comparison with the previ-

ous tested algorithms, QS improved the classification of transitional trajectories, especially

vis-a-vis the progressive trajectories, but the overlap with the hyperactivated classification

group remains. Also, this algorithm might be best used with a single threshold (for example
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Figure 6.20: QS Retrospective Analysis

the median (5.08)) between the first and third quartile of the hyperactivated and progressive

classification group.
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6.7 Logistic Regression RAC-QS

Logistic regression combines two previously discussed measures (Sections 4.5.3, and

4.5.4) of Quadrant Scoring (QS) and Relative Angle Count (RAC), into one measure. This

is an attempt to discover whether an improvement over each individual or both measures

can be achieved. We first present the results of the logistic regression together with a

classification comparison of logistic regression and its input variables QS and RAC.

Logistic Regression

Relative Angle Count vs. Quadrant Scoring  π=0.5
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Figure 6.21: Training data set Linear Logistic Regression Analysis on Quadrant Scoring (QS) and
Relative Angle Count (RAC). The regression line has a computed slope of 9.83 and
a y-axis intercept of -24.09. The squared markers indicate crossover data points in
regard to E[Y ] = 0.5.

Threshold Boundaries: The training data set consisted of two classified groups of sperm

trajectories, one hyperactivated and one progressive (6.1.1) . This correlates with the re-

sponse variable of the logistic regression that has also two possible qualitative outcomes.
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The 2D logistic regression analysis we used returns a 2D regression line and separates the

hyperactivated and progressive training data set with a probability π of 0.5 (Figure 6.21).

There are only three crossover data points (squared markers in Figure 6.21). This clear sep-

aration is proof that each input measure, QS and RAC, of the logistic regression is capturing

a different feature of the sperm trajectory. We propose to use the approximate perpendic-

ular distance to the regression line of these crossover points to define the margins for the

transitional sperm trajectories. A range of ± 5% serves this purpose well, by including all

but one crossover point.

Classification Analysis: Using Logistic Regression of QS and RAC, a total of 64.52% of

sperm could be correctly classified, an improvement over each individual algorithm tested

by itself that scored 58.87% for QS and 50.81% for RAC (Figure 6.22).
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The individual classification performance of logistic regression was 86.21% for hyper-

activated and 74.29% for progressive sperm, also higher than QS (72.41%, 57.14%) and

RAC (43.38%, 66.71%) for the same classification groups (Figure 6.23). Again, as in the

algorithms tested above, transitional sperm detection was low with only 12.0% correctly

classified sperm trajectories and lower than RAC in this group with 20.0%. QS, though

lower in hyperactivated and progressive sperm trajectory classification, had a with 48.0%

a fourfold higher correct classification of transitional sperm than the logistic regression

method.
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Figure 6.23: Logistic Regression Diffusion Matrix.

The improvement of classification with logistic regression came with an increase of 25

false positives, where the logistic regression method wrongly classified a sperm trajectory

as hyperactivated, compared to 16 for Qs and 21 for RAC (Figure 6.24). False negatives

were reduced to 4 from 8 for QS and 17 for RAC. While logistic regression improved
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the classification performance over its input variables QS and RAC, the improvements

are not substantial enough and are offset by false positives and lower correct transitional

classifications.
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Figure 6.24: Logistic Regression Comparison overview with its input variables QS and RAC.

Retrospective Analysis: We overlaid the regression line (E[Y ]TrainingData) with the±5%

transitional band, computed from the training data on the test data, in order to test how

well it matched the test data (Figure 6.25). As opposed to the training data, the test

data shows many more crossover points with a much larger perpendicular distance to the
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training data regression line. Next, we computed a logistic regression on the test data

(E[Y ]TestData) set and compared it to the training data (E[Y ]TrainingData) logistic regres-

sion line. E[Y ]TestData divides the test data with a steeper slope (42.14) than E[Y ]TrainingData

(9.83), but crosses the x-axis in a in a similar region, 3.39 and 2.44, respectively. This is

not overly concerning, since there are many lines that can be drawn separating these two

classification groups, considering the clusters of hyperactivated on the lower right and pro-

gressive on the upper left of the coordinate system.

The transitional bands computed from the training data cover only 3 transitional sperm

trajectories in the test data, with the remaining transitional trajectories (stars in Figure

6.25) spread widely across the graph. This wide spread of transitional trajectories across

the chart suggests that a band surrounding the 2D logistic regression line is not suitable

for transitional trajectory classification. Whereas the dichotomous 2D logistic regression

approach can classify hyperactivated and progressive sperm tracks, it cannot capture the

transitional sperm trajectories.

Transitional Band Analysis: We plotted the correct classification rate of hyperactivated,

transitional and progressive trajectories as a function of the transitional band width to eval-

uate the effect of the transitional band on transitional sperm trajectory detection (Figure

6.26). When the transitional band is set at zero percent, which is the 2D logistic regression

line itself, approximately 75% progressive and 90% hyperactivated sperm trajectories are

correctly classified. Widening the percentage of the band increases the classification rate of

transitional trajectories in parallel with a steady decline of hyperactivated and progressive

sperm trajectory classification. With a band width of 30% all transitional trajectories are

correctly classified, but at the expense of hyperactive and transitional detection of approxi-
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Logistic Regression

Relative Angle Count vs. Quadrant Scoring  π=0.5
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Figure 6.25: Logistic Regression QS-RAC Test Data Outcome Comparison. The predicted regres-
sion from the training data with ±5 margins. Training data coefficients are −4.9261
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transitional trajectories.

mately 30% and 40%, respectively. There is no effective band width to capture transitional

trajectories with a 2D logistic regression approach.

128



www.manaraa.com

6.7. LOGISTIC REGRESSION RAC-QS

0 5 10 15 20 25 30

0
2

0
4

0
6

0
8

0
1

0
0

Transitional Margins around Logic Regression Line [± %]

C
ls

si
fi

ca
ti

o
n

 A
g

re
e

m
e

n
ts

 [
%

]

Hyperactivated

Transitional

Progressive

Logic Regression Results: Transitional Margins

Test Data Set

Training Data Set

Boundary

Figure 6.26: Logistic Regression Transitional Margins. Dotted line: Band width based on the train-
ing data.

129



www.manaraa.com

6.8. MINIMUM BOUNDING SQUARE RATIO, MBSR

6.8 Minimum Bounding Square Ratio, MBSR

The MBSR algorithm reflects the ratio of the trajectory search area over an exploration

region of the sperm track (chapter 4 section 4.5.7). The results of the Minimum Bound-

ing Square Ratio algorithm are presented as follows: We first examined the results of its

individual components, the trajectory hull Ahull and the effect of the number of joint con-

vex hulls forming this trajectory area in section 6.8.1. This is followed by a discussion

of expected MBSR values (6.8.2), pursued by the results of threshold boundaries (6.8.3)

and classification analysis in a diffusion matrix (6.8.4). We conclude this section with a

retrospective analysis of the MBSR algorithm in section 6.8.5.

6.8.1 Trajectory Hull, Ahull

The trajectory area Ahull is computed as a set of connected convex hulls and is discussed

in section 4.5.7.1. Physiologically, a hyperactivated track is performing a wider search

pattern than a progressive track and it is therefore desirable to maximize Ahull, while mini-

mizing Ahull for a progressive trajectory that has not engaged in a search yet. To determine

the optimal number of trajectory hulls to reach this goal, we selected two representative

sets of n = 5 hyperactivated and progressive trajectories, with patterns described in the

literature to be challenging to classify [52, 76, 81, 122]. The hyperactivated trajectory pat-

tern is described subjectively as star spin, star shaped or circling (see chapter 2 Table 2.7).

The challenge for the algorithm is to correctly represent Ahull of a hyperactivated sperm

trajectroy, (doughnut shape) without falsely adding the center to the total area. Trajectory

H1 of Figures 6.28 depicts a typical circular hyperactivated sperm trajectory with a sin-

gle convex hull representing the trajectory area Ahull. Increasing the number of joint hulls
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Figure 6.27: Effect of the number of joint convex hulls on the trajectory regions. A 4-hull trajec-
tory region matches the physiological circumstance best for both hyperactivated and
progressive trajectories. Note the overestimation when using hull = 1 in both, hyper-
active and progressive trajectories. Hyperactive (ID 5NL2003): H1, H2, H4, H6, H9.
Progressive (ID 18ML3001): P1, P2, P4, P6, P9.

(H2, H4) improves the enveloping contour of the trajectory while the center is no longer

falsely added to the trajectory area Ahull. Further increasing the number of convex hulls

(H6, H9) generates voids in the outside of the trajectory contour. For a data acquisition

rate of 60Hz over 500 ms (30 data trajectory points) as used in this dissertation (Chap-

ter 4, Section 4.2.5), four joint convex hulls optimally describe the trajectory contour of a

hyperactivated sperm, without producing voids or falsely adding center areas, if they exist.

For the progressive trajectories (P1, P2, P4, P6, P9 of Figure 6.28), a single convex hull

describes a half moon area and does not follow the trajectory contour. As with the hyper-

activated trajectory example, the description of the progressive trajectory contour improves

with an increase to four hulls (P4). As the goal for progressive sperm trajectories was to fol-

low the trajectory contour and to minimize the trajectory area, any number of convex hulls
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(P4 − P9 or smaller) seems to satisfy these conditions with the constraint for the smallest

convex hull being three points. The chart of Figure 6.28 illustrates the average sperm tra-
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Figure 6.28: The dependency of the number of convex hulls and resulting trajectory area. Plotted
are the average of five typical ’star-shaped’ hyperactivated and five progressive tra-
jectories. The arrow depicts the optimal number of joint convex hull for this research.
The bars represent the standard deviation.

jectory area as a function of the number of convex hulls forming this area. The curve of H1

through H9 plots the average of the five sperm trajectories representing circling hyperac-

tive sperm. P1 through P9 plots the average of five linear moving sperm trajectories. The

trajectory area average for the hyperactivated and progressive sperm example decline with

an increase of the number of convex hulls. As mentioned in the previous paragraph, the

trajectory contour of the hyperactivated sperm trajectory is optimal with four joint convex

hulls. Four hulls are also a good choice for the progressive trajectories, considering the
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goal of minimizing the Ahull and that after P4 the area decreases only by a little.

6.8.2 Expected MBSR Value

The best theoretical value of MBSR is 100% for a sperm track covering its entire explo-

ration region (4.5.7). This scenario is most unlikely. An inscribed circle representing the

area of a circling hyperactivated sperm trajectory Ahull within a square, AMBS better re-

flects the physiological behavior of a sperm trajectory and provides a guideline value for an

expected upper bound MBSR (picture I, Figure 6.29). This simulation results in a MBSR of

66.67% and is confirmed with an actual hyperactivated circling sperm trajectory (61.86%)

in picture II of Figure 6.29. Picture III shows an example of a trashing hyperactivated tra-

2r

I II III IV

78.5%

hull=4

MBSR 68.21%

A
hull  

= 713.79 μm2

A
MBS  

= 1046.52 μm2

MBSR 25.12%

A
hull  

= 734.29 μm2

A
MBS  

= 2923.56 μm2

MBSR 61.86%

A
hull  

= 573.91 μm2

A
MBS  

= 927.81 μm2

Figure 6.29: Expected MBSR values for hyperactivated sperm trajectories. I; The square repre-
sents the AMBS of a circling hyperactivated trajectory and the inscribed circle its
trajectory area Ahull. This simulated case will result in a MBSR of 78.5%.. Actual
sperm trajectory examples with their MBSR value (II, III, IV).

jectory, that covers a smaller area and results in a MBSR of 25.12%. The final picture IV

is a star-shaped hyperactivated sperm trajectory with a MBSR of 68.21%. The trajectory

example IV appears to cover a smaller area of its exploration region square than example II

(68.21% vs. 61.86%), but has a higher MBSR . The reason lies in the overlapping convex
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hulls, occurring where the trajectory path reverses and crosses itself. Overlapping convex

hull areas are then accounted for multiple times in the trajectory area calculation Ahull.

This amplification of the MBSR is a desirable effect for hyperactivated trajectories, since

our goal is to maximize the area covered in this type of sperm trajectory. Contemplating

the model and examples from above, a reasonable approximate expected value for MBSR

should be in the range of 20% < MBSR < 70% for hyperactivated sperm trajectories.

Progressive sperm trajectories display more linear behavior and cover a smaller area. The

linear extend of the trajectory results in a large exploration region square AMBS adding to

a minimizing effect of MBSR. Picture I of Figure 6.30 is an example of a typical pro-

hull=4

I II III

MBSR 5.34%

A
hull  

= 91.23 μm2

A
MBS  

= 1707.34 μm2

MBSR 3.77%

A
hull  

= 85.11 μm2

A
MBS  

= 2257.2 μm2

MBSR 7.26%

A
hull  

= 182.03 μm2

A
MBS  

= 2506.0 μm2

Figure 6.30: Number of Hulls Effect on the MBSR of Progressive Tracks. A single hull overesti-
mates the track area for sperm with curved progressive tracks. A drastic reduction
and better result is reached when moving from a single to quadruple hull. The ex-
amples A andB would be falsely classified as hyperactive, if using a single convex
hull.

gressive sperm trajectory resulting in a much lower MBSR of 5.34% in comparison to a

hyperactivated MBSR. Other examples (picture II and III) of progressive sperm tracks lie

in a similar vicinity of the previous one of 3.77% and 7.26%. Considering these examples,
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a MBSR < 10% is to be expected for progressive sperm trajectories.

6.8.3 MBSR Threshold Boundaries

Threshold values for MBSR were determined by computing two different threshold re-

sponse curves form the training data. One threshold response curve (THprog of Figure 6.31)

was based on the training data containing only progressive trajectories, by incrementally

increasing the MBSR thresholds from 0 to 20 % while recording the number of detected

trajectories. The number of detected trajectories for each threshold were normalized over

the total amount (40) of available progressive sperm trajectories. The detection rate of pro-

gressive trajectories increased steeply with small increases in MBSR and identified all 40

progressive sperm trajectories at an MBSR of 11%.

We repeated this procedure to acquire a threshold curve (THhyper) with the hyperacti-

vated trajectories from the training data. Starting at a MBSR of 8% all hyperactivated tracks

were recognized until a MBSR threshold of approximately 13.5%, where the detection rate

steadily declined and finally dropped to zero with no detected hyperactivated trajectories,

at approximately 80% MBSR.

The intersection C of THprog and THhyper at approximately 11% was used as the center

for a transitional threshold band. As mentioned before, there are few guidelines for charac-

terizing transitional sperm trajectories making the process of finding threshold boundaries

for transitional sperm trajectories for the MBSR classification method even more challeng-

ing. Both threshold curves of THprog and THhyper have a steep incline and decline around

their intersection C limiting the threshold band width. Moving the left threshold boundary

will quickly result in a 50− 75% reduction of the detection rate of progressive sperm. We
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Figure 6.31: Normalized MBSR Classification Boundaries. Based on a progressive (n = 40) and
hyperactivated (n = 40) training data set. Margins were set to ±2.5% around the
curve’s intersection at ∼ 11% MBSR. Progressive trajectories: MBSRp < 8.5;
Transitional: 8.5 ≤ MBSRt ≤ 13.5, Hyperactive tracks: MBSRh > 13.5;.
THprog : Threshold response curve of progressive trajectories. THhyper : Threshold
response curve of hyperactivated trajectories. C: Intersection of THprog and THhyper

.

decided on a ±2.5% (5% width) transitional threshold band to avoid large detection losses.

A 5% MBSR transitional band will keep the detection rate well above the 90 percentile

for both hyperactivated and progressive sperm trajectories of the training data set, while

providing space for potential transitional sperm .
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6.8.4 MBSR Classification Results

When applied to the test data containing 138 trajectories, the MBSR algorithm had an all-

over classification performance of 111/124 or 89.52% (Figure 6.32). The individual results

were even higher with 27/29 or 93.1% correctly classified hyperactivated sperm trajecto-

ries and 69/70 or 98.5% progressive trajectories. Transitional sperm tracks were classified

correctly with 15/25 or 60.0%. Although the result is low, it was the highest among all

classification algorithms. MBSR produced 8 false positives, where MBSR classified tran-
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Figure 6.32: MBSR Diffusion Matrix. x-axis: Human classification as predicted outcome. y-axis:
MBSR algorithm as actual outcome. 1, 2 and 3 represent red (hyperactive), yellow
(transitional) and green (progressive) classification.

sitional sperm trajectories as hyperactive, and 2 false positives in the same category. More

importantly, no hyperactivated trajectories were classified by the MBSR algorithm as pro-

gressive or vice versa. With its high correct classification rate of > 93%, MBSR is an
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excellent candidate for classification of hyperactivated and progressive sperm trajectories.

Transitional sperm trajectories were also detected with a higher rate than with any other

method we tested.

6.8.5 MBSR Retrospective Analysis

Figure 6.33 displays the retrospective analysis of the test data with MBSR training data

threshold boundaries of 8.5% and 13.5%. The MBSR algorithm was able to provide a clear

separation of the test data distributions of hyperactive to progressive sperm trajectories

by a margin of 8% to 13%. MBSR also was capable of narrowing the distribution of
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Figure 6.33: MBSR Retrospective Analysis of the Test Data. P1: Progressive Trajectory classi-
fication outlier. P1, P2: Hyperactive Trajectory classification outliers, H1, ...,H4:
Hyperactive Trajectory classification outliers.
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transitional sperm trajectories between 7% and 18%. Less than half of the transitional

sperm trajectories lie within approximately one quartile of the hyperactivated classifications

group. The upper (13.5%) and lower threshold (8.5%) bounds already correctly classify all

but 2 of of the hyperactivated (93.1% ) and all but 1 of the progressive (98.57% ) sperm

trajectories. Elevating the upper threshold boundary from 13.8% to 18% would improve

the transitional sperm trajectory classification, but at a substantial decline in detection of

hyperactivated trajectories. A lowering of the opposite transitional threshold end from

8.5% down to 7% could slightly improve this classification category, but at the expense to

the progressive classification set.

T
1

MBSR = 20.95
T

2

MBSR = 26.95%
P

1

MBSR =12.50% 

Figure 6.34: MBSR Test Data Outlier Trajectories. P1: Progressive Trajectory classification out-
lier. P1, P2: Hyperactive Trajectory classification outliers.

Outlier Analysis: Figure 6.33 shows one progressive sperm trajectory (P1) larger than

1.5 times the quartile of this classification distribution. On further analysis with an en-

larged view (Figure 6.34) this sperm trajectory with an MBSR of 12.5% has some erratic

features and could also have been placed in the transitional group by the experts in the field.

Similarly, a closer look at the outliers of the transitional (T1 and T2) group revealed some

hyperactivated features. This substantiates the inherent difficulty classifying transitional

sperm trajectories, lacking consistent definitions by investigators. The trajectory outliers of
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the hyperactivated group are of less concern, in view of the fact that any sperm trajectory

above the threshold of 13.5% will be correctly classified.

6.9 Summary Results of Classification Algorithms

A comprehensive evaluation of the algorithms takes into account the individual clas-

sification performance of hyperactivated, transitional and progressive sperm trajectories.

The individual percentages are averaged and presented as the all-over classification suc-

cess rate. The Minimum Bounding Square Ratio algorithm ranked first with a total correct

MBSR

RRL

LogReg

QS

VCL

RAC

0 20 40 60 80 100

89.52

80.65

67.74

64.52

58.87

50.81

Total Correct Classification

Figure 6.35: Classification Results. Classification Percentage is based on the total number of clas-
sifiable trajectories n = 124.

classification rate of 89.52%. It is followed by RRL with 80.65% and VCL with 67.74%.

This is a low performance for VCL, considering that VCL is currently the gold standard

by investigators in the field. Logistic regression (64.52%) was able to improve the input

classification algorithm of Quadrant Scoring QS (58.87%) and Relative Angle Count RAC
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(50.81%). A closer look at the detailed classification performances of hyperactivated, tran-
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Figure 6.36: Classification Results Summary. Classification percentages for hyperactivated, tran-
sitional and progressive columns are based on the individually available counts in
each classification group. Misclassifications percentages are based on the number of
incorrectly classified trajectories, divided by the total number of classifiable trajecto-
ries.

sitional, progressive and misclassifications reveals the strengths and weaknesses of each

algorithm better than the overall classification chart. The bar chart of Figure 6.36 displays

these individual results for the algorithms examined in this dissertation. For better compar-

ison, the same information as in Figure 6.36 is rearranged in Figure 6.37 as ranked groups

of hyperactivated, transitional, progressive and misclassification results. MBSR ranked

best in all three classification categories (93.10%, 60.0%, 98.57%). It also produced the

fewest misclassifications (10.48%). The classification rate of MBSR is at par with the RRL
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algorithm for hyperactivated sperm trajectories and slightly below in detecting transitional

trajectories, but RRL approximately doubles the misclassified (19.35%) sperm trajectories.

In third place for classification of hyperactivated trajectories is the combined measure of

logistic regression (86.21%), but it ranks last in the transitional category (12.0%) and in the

midfield among the algorithms with respect to the number of misclassifications (35.48%).

The logistic regression algorithm is followed by QS with 72.41% correctly classified hy-

peractivated sperm trajectories. QS ranks second highest in detecting transitional sperm

(48%) and last for progressive trajectories(57.14%). With 41.13% misclassified tracks, QS

ranks the second highest for this group next to RAC with the most misclassifications of

49.19%. VCL, the current gold standard, had a mediocre hyperactivated sperm trajectory

classification rate of 51.72%, followed lastly by RAC with 41.38%. VCL ranked third for

progressive trajectories in the ninetieth percentile (91.43), but ranked poorly on place four

for transitional (20.0%) sperm tracks and showed 32.26% misclassifications. RAC misclas-

sified the most trajectories (49.19%) and was second to last for detecting progressive sperm

(65.71%).

Table 6.37 summarizes the absolute values as well as the percentages of the algorithms

classification results.
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Figure 6.37: Ranked Classification Results Summary.

Test Result Classification

Absolute Percent

Algorithm hyperactivated transitional progressive hyperactivated transitional progressive misclassified

MBSR 27 15 70 93.10 60.0 98.57 10.48

RRL 27 6 67 93.10 24.0 95.71 19.35

VCL 15 5 64 51.72 20.0 91.43 32.26

QS 21 12 40 72.41 48.0 57.14 41.13

RAC 12 5 46 41.38 20.0 65.71 49.19

Logistic Regr.

RAC-QS 25 3 52 86.21 12.0 74.29 35.48

Table 6.8: Summary Results. n = 124
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Chapter 7

MBSR Hyperactivity Classification

Application

In this chapter we present a practical application for spermatozoa hyperactivity classifica-

tion in a laboratory research study involving the pharmaceuticals Viagra (Sildenafil), Levi-

tra (Vardenafil) and Cialis (Tadalafil). These are popular drugs to treat erectile dysfunction

(ED). In addition to effectively treating ED, these pharmaceuticals have been reported to

also affect sperm motility parameters, possibly by inducing premature sperm hyperactiva-

tion and thus potentially affect fertility [86, 95, 97]. As mentioned earlier in Chapter 2

Section 2.9, there is currently no effective tool to objectively identify and classify hyperac-

tivated spermatozoa. Therefore, previous investigators have relied on the WHO parameters

(2.4.1) in their research to describe sperm motility and hyperactivation observations. This

laboratory study describes how those drugs influence spermatozoa hyperactivity using the

MBSR classification algorithm. We chose MBSR because it ranked best among the algo-
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rithms investigated in this dissertation.

7.1 Introduction

Phosphodiesterase inhibitors (PDE) are the main active substances in the popular and

effective group of drugs for the treatment of erectile dysfunction. PDEs are in the center

of emerging research questions in the field of spermatozoa motility. In recent years, there

has been a substantial interest in investigating the non-erectile side effects of PDEs on the

spermatozoa cells themselves [7, 34, 39, 85, 95]. Indeed, PDE increase overall intracellular

cAMP1 (cyclic adenosine monophosphate) levels of sperm, part of the process of sperm

capacitation, which leads to hyperactive sperm motion. cAMP acts as a second messenger

for many cell physiological increases in intracellular cAMP in many biological processes

and as a result can dramatically alter cell physiology. It has been reported that the PDE in

Viagra and Sildenafil stimulate human sperm motility and capacitation, but do not induce

the acrosome reaction [28, 67]. Although investigators have used hyperactivation to express

the effect of PDEs on sperm motility, no quantifiable hyperactivity classification was used.

Rather, investigators have relied on WHO measures, shown in this dissertation to be an

unreliable measure for hyperactivation. The developed algorithms, in particular MBSR,

could be used to quantify the drug‘s influence on spermatozoa hyperactivity.

1Biological process for the intracellular signal transduction.
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7.2 Study Goal

The objective of this study was twofold:

� First to show the applicability of one of the hyperactivity algorithms developed in this

dissertation in a practical laboratory study.

� Second to explore in a quantitative manner the effect of PDE inhibitors on sperm hyper-

activity motility.

7.3 Materials and Methods

In this section we cover the specimen used for this study (7.3.1), and preparation of the

drugs (7.3.2) followed by the drug-time-response protocol (7.3.3) and data acquisition and

data processing (7.3.4). Next, we discuss validity (7.3.5) and lastly we cover hyperactivity

classification (7.3.6).

7.3.1 Specimen

Fresh sperm from five different stallions was collected and prepared according to the

procedure described in Chapter 4 Section 4.2.4. Prior to diluting the specimen to approx-

imately 20 106 sperm/ml, the initial sperm count was obtained. To answer the research

questions of 7.2, we present the preliminary results of the analysis of one stallion ejaculate

here.

7.3.2 Drug Preparation

Sample tablets of Viagra (50 mg), Levita (10 mg) and Cialis (10 mg) were crushed

and dissolved in ethanol (10 mg/ml) at room temperature using a vortex mixer and by fil-
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tering the solution through a Sphor c© Acrodic c© filter (Gelman Sciences, Ann Arbor,

MI, USA) having 0.45μm pores to remove solids and fillers. Mostafa [85, 86] published

concentrations used in human studies for Tadalafil (4.0, 1.0, 0.5 mg/ml) and Sildenafil

(4.0, 2.0, 1.0, 0.5, 0.1 mg/ml). Staying within these published dosage ranges, Viagra and

Levitra were added to sperm at 0.125 mg/ml, 0.25 mg/ml, 0.5 mg/ml, 1.0 mg/ml, 1.5 mg/ml

and 2.25 mg/ml. But these dosages eliminated most sperm motility in an initial test with

Cialis, which contains PDE-5 and PDE-11 inhibitors. To obtain comparable motility re-

sponses to the previous groups, Cialis dosages were reduced 50 fold to 0.0025 mg/ml,

0.0625 mg/ml, 0.1 mg/ml, 0.125 mg/ml, 0.25 mg/ml and 0.5 mg/ml.

7.3.3 Drug Time Response Protocol

We developed a protocol (Figure 7.1) to investigate the response of the PDE inhibitors on

the sperm samples, according to drug dosage and the length of time of the treatment on the

sperm sample. The processed ejaculate was divided into 3 x 6 equal volumes, representing

the six dosages (A′, A′′ and A′′′) and 3 drugs (Viagra, Levitra and Cialis) used. One volume

(A) did not receive any treatment and was used as control to document the natural decay

of the sperm specimen. From the three volumes intended for the drug treatment, a 6 μl

sample was taken immediately (time=0) after the drug was added (Figure 7.1 part I). An-

other measurement was acquired 30, 60 and 120 minutes after the drug was introduced to

the specimen. At each time interval three measurements were taken with the CASA device

from the droplet to reduce the error of inhomogeneity. These measurements were repeated

for each of the six dosages used and replicated for each of the three drugs, Viagra, Lev-

itra and Cialis. Measurements from the control volume were performed more frequently
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Figure 7.1: Phosphodiesterase Inhibitor (PED) Treated Specimen Experimental Protocol. The
ejaculate (A) is divided into 3 (A’, A”, A”’) groups of 6 dosages. Three measure-
ments (I) were taken at each time marker and droplet. The timer intervals of (I) were
staggered to accommodate all dosages and drugs in this protocol (II).
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interleaved between the drug treated samples. A single measurement of a droplet took ap-

proximately 1-3 minutes. In order to accommodate all required timed measurements, the

initial start time when the drug dosages were added had to be staggered (II).

7.3.4 Data Acquisition and Data Processing

Each droplet was scanned in three different slide locations to compensate for sperm

nonhomogeneity on the slide and later added into one single file. We used the standard

CASA ASCII output file containing parameters as listed in 4.2.5, although only the x, y

trajectory data pairs were required to compute MBSR and classify the sample.

7.3.5 Validity

In this application we have to consider construct validity as a threat to this experiment.

There are confounding factors during sperm classification treated with erectile dysfunc-

tion drugs, such as phosphodiasterase inhibitors. Since the sperm hyperactivity naturally

increases during the elapsed time of the experiment, it could be confused with an effect

coming from the drug. We reduce this threat by comparing the drug treated classification

with an untreated sample measured over the entire course of the experiment and reversing

the test order with another animal at another day.

7.3.6 Classification of Hyperactive, Transitional and Progressive Sperm

The MBSR classification algorithm was implemented in JAVA code on the JAVA JVM

1.5 platform and executed on an off-the-shelf laptop running OS X v10.5.6. First, the

MBSR classification algorithm was applied to each measurement from the control sample
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(Figure 7.2). For each droplet the resulting number of hyperactivated, transitional and pro-

gressive classified trajectories was divided by the total number of sperm trajectories existing

in this measurement. Subsequently, this returned the percentage of hyperactivated, transi-

tional and progressive sperm trajectories of this measurement. We plotted the results in an

x − y chart, where x is the time the measure was taken and y the percent of classified tra-

jectories in hyperactive, transitional and progressive. A regression line for each of the three

classification groups was computed using R Statistical Software [99]. These regression

lines ( f(x)hyper,f(x)trans(x),f(x)prog ) were later used to compensate for the natural de-

cay of the specimen over time, such as a natural increase of hyperactive and decrease of

progressive sperm trajectories. Figure 7.2 shows this natural decay of the untreated sample

in a decline of progressive sperm trajectories ( f(x)prog ) from approximately 18% at the

begin of the experiment (time=0) down to approximately 10% after 3 hours. Similarly, the

hyperactivity ( f(x)prog ) of the sperm sample naturally increased during the testing period

of three hours from approximately 6% to approximately 15%. The transitional ( f(x)prog )

group remained constant throughout the measurement period.

Next, the MBSR classification algorithm was applied to each time measurement and

dosage. The computed classification percentages were adjusted according to the regres-

sion lines of the control. For example, the MBSR classification algorithm computed 20%

hyperactive, 10% transitional and 30% progressive for the ’60 minute’ time measurement

after the drug was added. Note, due to unclassifiable trajectories, the percentages do not

add up to 100%. If this ’60 minute’ measurement actually was taken at 100 minutes after

the start of the experiment, the adjusted values for the hyperactivated trajectories would

be: f (100)hyper = 0.0311 · 100 + 6.371. The natural hyperactivity percentage at 100 min-
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Figure 7.2: Untreated Specimen Classification. The control showed an increase of hyperactivity
over the course of the measurement, while the progressiveness declined. The control is
used to adjust for a natural decay of a sperm sample. f(x)hyper: Hyperactivated tra-
jectories regression line, f(x)trans: Transitional trajectories regression line, f(x)prog:
Progressive trajectories regression line.

utes would be 9.48%, making the adjusted hyperactivity result 20% − 9.48% = 10.52%.

Likewise, the natural percentage of transitional trajectories would be f (100)trans =

0.00663·100 + 4.633, resulting in 5.3% naturally occurring transitional sperm trajectories,

making the adjusted transitional result 10% − 5.3% = 4.7%. Equally, for the progressive

trajectories f (100)prog = −0.0378 · 100 + 17.91, resulting in 14.13% naturally occurring

progressive trajectories in this measurement. The adjusted percentage of progressive tra-

jectories would be 30%− 14.13% = 15.87. A positive value from this subtraction denotes
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an increase in this particular type (hyperactivated, transitional or progressive) of classified

trajectories relative to the control. A negative value from this subtraction denotes a decrease

in this particular type of classified trajectories relative to the control.

7.4 Experimental Results

The results are presented as follows: We begin by discussing the percentage of hyperac-

tivated, transitional and progressive sperm trajectories of the control sample (7.4.2). Then,

we present the results for progressive (7.4.3) sperm trajectories of the treated sample as the

effect of drug, dosage and time, followed by the results for transitional (7.4.3) and lastly

for hyperactivation (7.4.4) on the treated sample.

7.4.1 Hyperactivated, Transitional and Progressive Sperm Motility of the Untreated Sample

The spermatozoa of the stallion ejaculate decays naturally over a time period of hours.

The sperm cells loose their motility, some enter hyperactivation and ultimately die. This

changes the proportion of the specimen over the course of the experiment and needs to be

accounted for in the measurement. Figure 7.2 demonstrates the percentage of hyperacti-

vated, transitional and progressive sperm trajectories in the untreated sperm specimen over

the course of the experiment of approximately three hours. For each of the three classi-

fication groups a regression line is computed ( f(x)hyper, f(x)trans, f(x)prog). Initially,

the sample consisted of 6.37% hyperactivated, 4.63% transitional and 17.91% progressive

sperm trajectories. The specimen started out with a high number of progressive and low

number of hyperactive trajectories. As expected, while the experiment progressed, the

sample decayed and naturally more progressive sperm trajectories turn into hyperactivated
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ones. Interestingly, the proportion of transitional sperm trajectories (transitional regres-

sion line slope = 0.00663) remained almost constant. After approximately 3.5 hours (200

minutes) into the experiment, the sample contained an increased number of hyperactivated

sperm from 6.37% to 12.59%. The number of progressive trajectories dropped from 17.91%

to 10.35% and transitional sperm trajectories slightly increased over the same period with

4.63% versus 5.96%.

7.4.2 Progressive Sperm Motility as Effect of PDE Treatment

Figure 7.3 shows the preliminary results of percent progressive sperm trajectories in re-

lation to the drug (Viagra, Levitra, Cialis), drug dosage, and elapsed time after the drug was

added to the sample. A slight increase ( 5%) in progressive sperm trajectories are produced

in the Viagra treated sample with the dosages of 1.0mg/ml, 1.5mg/ml and 2.5mg/ml at

approximately 30 minutes. The Levitra treated sample shows a drop in progressive sperm

trajectories for all dosages after 60 minutes. The Cialis treated sample similarly reduces

progressive sperm trajectories throughout all dosages and time. Neither of the treated sam-

ples (Viagra, Levitra, Cialis) shows a conclusive link between dosage and response increase

or decrease of percent progressive sperm trajectories of the sample.
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7.4.3 Transitional Sperm Motility as Effect of PDE Treatment

Figure 7.4 displays the preliminary results of percent transitional sperm trajectories as an

effect of the drug (Viagra, Levitra, Cialis), drug dosage, and elapsed time after the drug was

added to the sample. Little difference between (approximately < ±5%) can be observed

in transitional sperm trajectories as a result of the drug, dosage and duration the drug acted

on the sample.
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7.4.4 Hyperactivated Sperm Motility as Effect of PDE Treatment

Figure 7.5 shows the preliminary results of percent hyperactivated sperm trajectories in

relation to the drug (Viagra, Levitra, Cialis), drug dosage, and elapsed time after the drug

was added to the sample. A slight increase ( < 10%) in hyperactivated sperm trajectories

are produced in the Viagra treated sample with the dosages of 0.5mg/ml, 0.25mg/ml at

approximately 60 minutes after adding the drug. The Levitra treated sample also shows a

small increase ( 5%) at a dose of 0.5mg/ml at the 60 minutes measurement. All dosages

of the Levitra treated sample show small elevated hyperactivation values ( < 5%) at the

2 hour measurement. The Cialis treated sample show the highest level of increase in hy-

peractivated sperm trajectories already at the moment the dose was added (time=0). For

example, the dose 0.5mg/ml produced a jump of 12% in hyperactivated sperm trajecto-

ries that declined to approximately 5% after 2 hours. All dosages produced an increase in

hyperactivity after 2 hours between 5% (for 0.0025mg/ml, 0.1mg/ml) and approximately

10% (for the remaining dosages). As before, neither of the treated samples (Viagra, Lev-

itra, Cialis) shows a conclusive link between dosage and response increase or decrease of

percent hyperactivated sperm trajectories of the sample.
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7.5 MBSR Application Conclusion

We performed a laboratory study on stallion sperm to evaluate the effect of erectile dys-

function drugs on hyperactivity at different dosages and exposure times.

To answer the first research question, we successfully demonstrated that the newly devel-

oped MBSR algorithm is suitable to be used in a pharmaceutical study. One one protocol

of one stallion ejaculate contains 3 measures per droplet, approximately 50 trajectories

per droplet, 5 timed measurement, repeated by 6 dosages and 3 drug resulting in 13, 500

measurements, not including the control. Manual review and classification of this many

trajectories would be dauntingly tedious.

For the second research question, although the preliminary results are inconclusive, a

trend of increased hyperactivity in the Cialis treated sample may emerge.

Future work will include the measurement of several stallions to come up with a more

conclusive result.
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Conclusion and Future Work

8.1 Conclusion

We developed five computational algorithms (MBSR, RRL, QS, RAC, Logistic Regres-

sion Model) to automatically detect and classify spermatozoa in hyperactivated, transitional

and progressive trajectories in comparison to the ”gold standard” existing VCL method.

Three algorithms (MBSR, QS and RAC) introduced in this dissertation were new develop-

ments and one a combination of two (QS and RAC) in a logistic regression model. Another

one (RRL) is an improvement over an existing WHO measure LIN.

VCL is the current gold standard used by investigators in hyperactivity classification.

In this dissertation, VCL performed inadequately in correctly classifying hyperactivated

sperm trajectories (51.72%), but did better with the progressive group (91.43%) and poorly

on transitional trajectories (20.0%). VCL also generated a substantial amount of misclassi-

fications (32.26%).

MBSR is an algorithm that interprets the physiological erratic sperm trajectory move-
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ment changes observed in hyperactivated sperm as a search pattern to find an oocyte for

fertilization. RRL removes an imperfection of the existing LIN and STR measures, by us-

ing the largest distance of a minimum bounding rectangle enveloping the sperm trajectory,

instead of using the distance between the first and last point of the sperm trajectory. The

result is a new robust linearity measure that is unaffected by the shape of the sperm trajec-

tory. QS is a simple linearity measure based on the relative occurrence of two consecutive

trajectory points within a Cartesian coordinate system. RAC is an attempt to model the

symmetrical flagellar beating of the sperm as an indicator for linear movement. Finally, to

improve QS and RAC, we combined both in a 2D logistic regression model.

MBSR performed the best in all three classification categories of hyperactivated (93.10%),

transitional (60.0%) and progressive (98.57%), followed by RRL (93.10%, 24.0%, 95.71%),

respectively. However, RRL performed poorly in classifying transitional sperm trajectories

and produced almost twice as many misclassifications as MBSR (19.35% vs. 10.48%). The

simple QS algorithm performed adequately in classifying hyperactivated sperm trajectories

with 72.41%, detected more transitional sperm (48.0%) than RRL, but fewer progressive

trajectories (57.14%). QS (41.13%) also had the second highest misclassification rate after

RAC (49.19%). In spite of the promising theory behind RAC, this algorithm performed

worst with 41.38% correctly classified hyperactive trajectories, second to last with 65.71%

progressive trajectories, and even with VCL (20.0%) with transitional sperm trajectories.

Lastly, we showed that a combination of two mediocre algorithms (QS and RAC) can be

improved by logistic regression techniques. The logistic regression model correctly classi-

fied 86.21% of hyperactivated and 74.29% of progressive sperm trajectories. Transitional

trajectory classification was the lowest with only 12.0% and misclassifications were the
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third highest among the other algorithms tested.

All algorithms, the best and the lowest scoring, had difficulties classifying transitional

sperm,but consistently performed better in classifying hyperactivated or progressive sperm

trajectories. The best classification of transitional sperm trajectories was only 60.0% by

the MBSR algorithm. This illustrates the need for better descriptions and definitions for

transitional sperm trajectories. The difficulty characterizing transitional sperm trajectories

is seen throughout this dissertation, from the lack of an agreement among authors about

what transitional sperm are, to the omission of transitional sperm from the training data due

to the lack of an agreed-upon definition, and to the difficulty experienced by experts in the

field in classifying the test data that included transitional sperm. Experts were instructed

to classify hyperactive and progressive sperm only, leaving the remaining trajectories as

transitional, but other experts could easily arrive at somewhat different classifications.

The current limitations of our algorithms is the availability of a threshold for trajectories

for species other than the equines tested. We recommend using the same procedure we

used to determine threshold for other sperm trajectories.

Next, we address the research questions R1 through R7 from chapter 1 section 1.3:

In chapter 4 we addressed research question R1 (Can hyperactivated sperm be identified

and classified from 2D trajectory data, obtained from industry standard semen scanners?),

R2 ( Is it possible to develop computational algorithms to describe sperm hyperactivation?

and research question R3 (Can computer algorithms be used to accurately describe move-

ment patterns?). Chapter 6 and 7 dealt with research question R4 ( Can such algorithms

match or surpass classifications by experts in the field?) and R6 (Are those new measures

and algorithms robust enough to be used in daily laboratory testing?). Research Question
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R5 (Can the existing sperm parameter measures be improved?) was answered in Chap-

ter 4 Section 4.5.6. Finally, research question R7 (Can we automatically detect types of

sperm motility using existing laboratory technology with computer science algorithms?)

was addressed in Chapters 4 through 7.

8.2 Future Work

The initial focus of this dissertation was to develop computational algorithms to detect

and classify spermatoza hyperactivity automatically, reliably and reproducibly. Overall,

this research has developed a detailed understanding of expressing the biological phe-

nomenon of hyperactivity with reasonable computational algorithms. Future work could

include aggregates of the developed algorithms assembles according to a variety of statisti-

cal methods to further refine the results, especially for the transitional trajectories. Another

aspect is understanding and developing better guidelines and definitions for transitional

sperm trajectories.
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Chapter 9

Appendix

9.1 Training Data Set

Figure 9.1 shows an excerpt of the training data used in this dissertation, Each category,

hyperactivated and progressive, consists of 40 trajectories each, selected by experts in the

field. To avoid overlapping trajectories an excerpt of 13 progressive and 15 hyperactivated

sperm trajectories are shown. The trajectories are rotated to maximize their exploration

region AMBS and are displayed with their trajectory area Ahull and RRL.
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Progressive Hyperactivated

Figure 9.1: Training Data Excerpt. Excerpt of progressive and hyperactivated training data set
with 40 trajectories each. Displayed are the trajectory, trajectory hull and RRL. The
largest side of RRL is used for MBSR.
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9.2 Test Data Set

In Figure 9.2 fourteen of 138 sperm trajectories of the test data are displayed. Shown are

the trajectories, their trajectory area Ahull and their rotated rectangular linearity RRL. The

largest side of RRL is used for the trajectory exploration region AMBS .

Figure 9.2: Test Data Set Excerpt. The test data contained 138 trajectories of four random CASA
recordings with 18, 21, 52 and 47 trajectories respectively. Displayed are the trajectory,
trajectory hull and RRL.
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9.3 Sperm Suspension

The purpose of the solution is to provide nourishment and prolong the life of the sperm

and therefore increase the consistency and quality of the experimental data.

Fructose 1.52 g

Glucose 0.1 g

NaPyruvate 0.002 g

NaLactate 0.37 ml

BSA 0.3 g

added to 100 ml Stallion Tyrode’s

NaCl .216 g

KCL .075 g

KH2PO4 .016 g

NaHCO3 .300 g

MgSO4 .029 g

Hepes .240 g

CaCl22H2O .025 g

Table 9.1: TALP is the acronym for Tyrode’s, Albumin, Lactate, Pyruvate. Albumin is a protein
(BSA part: Bovine Serum Albumin), Lactate is an energy source and Pyruvate is an acid
helping to break down glucose. Tyrode’s solution mimics interstitial fluid.
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